OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 2 — Feb. 1, 2003
  • pp: 273–279

All-optical atomic clock based on coherent population trapping in 85Rb

Mikko Merimaa, Thomas Lindvall, Ilkka Tittonen, and Erkki Ikonen  »View Author Affiliations


JOSA B, Vol. 20, Issue 2, pp. 273-279 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000273


View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all-optical microwave frequency standard based on coherent population trapping (CPT) in 85Rb is developed. The CPT resonances are detected by an ordinary edge-emitting diode laser in a simple optical setup. A buffer-gas mixture is carefully optimized to yield a narrow linewidth and a reduced temperature dependence of the resonance frequency. With the developed system we are able to measure ultranarrow optically induced hyperfine CPT resonances at <20 Hz, which is in good agreement with the linewidth calculated from experimental parameters. The frequency of an RF-signal generator has been stabilized to the CPT resonance between the two mF=0 magnetic sublevels. The relative frequency stability (square root of Allan variance) follows a slope of 3.5×10-11 τ-1/2(1 s<τ<2000 s). The best stability of 6.4×10-13 is reached at an integration time of τ=2000 s. This stability is sufficient for many high-precision applications. Frequency-shift measurements were made to evaluate the frequency dependencies on the operation parameters.

© 2003 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(300.3700) Spectroscopy : Linewidth
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6320) Spectroscopy : Spectroscopy, high-resolution

Citation
Mikko Merimaa, Thomas Lindvall, Ilkka Tittonen, and Erkki Ikonen, "All-optical atomic clock based on coherent population trapping in 85Rb," J. Opt. Soc. Am. B 20, 273-279 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-2-273


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Cyr, M. Te⁁tu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640-649 (1993). [CrossRef]
  2. J. Kitching, S. Knappe, N. Vukicevic¸, L. Hollberg, R. Wynands, and W. Weidmann, “A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000). [CrossRef]
  3. J. Kitching, L. Hollberg, S. Knappe, and R. Wynands, “Compact atomic clock based on coherent population trapping,” Electron. Lett. 37, 1449-1451 (2001). [CrossRef]
  4. S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, “Characterization of coherent population-trapping resonances as atomic frequency references,” J. Opt. Soc. Am. B 18, 1545-1553 (2001). [CrossRef]
  5. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976). [CrossRef]
  6. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988). [CrossRef] [PubMed]
  7. M. O. Scully and M. Fleischnauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360-1363 (1992). [CrossRef] [PubMed]
  8. M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191-201 (1992). [CrossRef]
  9. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257-354 (1996). [CrossRef]
  10. J. Vanier, A. Godone, and F. Levi, “Coherent population trapping in cesium: dark lines and coherent microwave emission,” Phys. Rev. A 58, 2345-2358 (1998). [CrossRef]
  11. R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1-25 (1999); erratum, Appl. Phys. B 70, 315 (2000). [CrossRef]
  12. Y. Saburi, K. Koga, S. Kinugawa, T. Imamura, H. Suga, and Y. Ouchi, “Short-term stability of laser-pumped rubidium gas cell frequency standard,” Electron. Lett. 30, 633-635 (1994). [CrossRef]
  13. G. Mieti, J. Deng, F. L. Walls, D. A. Jennings, and R. E. Drullinger, “Laser-pumped rubidium frequency standards: new analysis and progress,” IEEE J. Quantum Electron. 34, 233-237 (1998). [CrossRef]
  14. J. Vanier, M. Levine, D. Janssen, and M. Delaney, “Coherent population trapping and intensity optical pumping: on their use in atomic frequency standards” in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 155-166.
  15. J. C. Camparo, “Reducing the light-shift in diode laser pumped rubidium atomic clock,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 988-992.
  16. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, London, England, 1989).
  17. J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe, and R. Wynands, “Optical-pumping noise in laser-pumped, all-optical microwave frequency references,” J. Opt. Soc. Am. B 18, 1676-1683 (2001). [CrossRef]
  18. R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split dark resonances,” Phys. Rev. A 58, 196-203 (1998). [CrossRef]
  19. H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633 nm,” Opt. Commun. 152, 182-188 (1998). [CrossRef]
  20. Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher, “Broadening of the Rb resonance lines by the noble gases,” Phys. Rev. A 11, 1815-1828 (1975). [CrossRef]
  21. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472-473 (1953). [CrossRef]
  22. M. Erhard, S. Nußmann, and H. Helm, “Power broadening and Doppler effects of coherent dark resonances in Rb,” Phys. Rev. A 62, 061802(R)1-4 (2000). [CrossRef]
  23. P. L. Bender, E. C. Beaty, and A. R. Chi, “Optical detection of narrow Rb87 hyperfine absorption lines,” Phys. Rev. Lett. 1, 311-313 (1958). [CrossRef]
  24. J. Vanier, J.-F. Simard, and J.-S. Boulanger, “Relaxation and frequency shifts in the ground state of Rb85,” Phys. Rev. A 9, 1031-1040 (1974). [CrossRef]
  25. D. B. Sullivan, J. C. Bergquist, J. J. Bollinger, R. E. Drullinger, W. M. Itano, S. R. Jeffers, W. D. Lee, D. Meekhof, T. E. Parker, F. L. Walls, and J. D. Wineland, “Primary atomic frequency standards at NIST,” J. Res. Natl. Inst. Stand. Technol. 106, 47-63 (2001). [CrossRef]
  26. G. Orriols, “Nonabsorption resonances by nonlinear coherent effects in a three-level system,” Nuovo Cimento B 53, 1-23 (1979). [CrossRef]
  27. M. Arditi and J.-L. Picqué, “Precision measurements of light shifts induced by a narrow GaAs laser in the 0-0 133Cs hyperfine transition,” J. Phys. B 8, L331-L335 (1975). [CrossRef]
  28. F. Levi, A. Godone, and J. Vanier, “The light shift effect in the coherent population trapping cesium maser,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 47, 466-470 (2000). [CrossRef]
  29. K. L. Corvin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998). [CrossRef]
  30. M. B. Bloch, J. C. Ho, C. S. Stone, A. Syed, and F. L. Walls, “Stability of high-quality quartz crystal oscillators: an update,” in Proceedings of the 43rd Annual Symposium Frequency Control (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1989), pp. 80–84.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited