OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 2 — Feb. 1, 2003
  • pp: 343–350

Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate

Tolga Kartaloğlu, Z. Gürkan Figen, and Orhan Aytür  »View Author Affiliations


JOSA B, Vol. 20, Issue 2, pp. 343-350 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000343


View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a simple ad hoc method for designing an aperiodic grating structure to quasi-phase match two arbitrary second-order nonlinear processes simultaneously within the same electric-field-poled crystal. This method also allows the relative strength of the two processes to be adjusted freely, thereby enabling maximization of the overall conversion efficiency. We also report an experiment that is based on an aperiodically poled lithium niobate crystal that was designed by use of our method. In this crystal, parametric oscillation and second-harmonic generation are simultaneously phase matched for upconversion of a femtosecond Ti:sapphire laser to 570 nm. This self-doubling optical parametric oscillator provides an experimental verification of our design method.

© 2003 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7220) Nonlinear optics : Upconversion

Citation
Tolga Kartaloğlu, Z. Gürkan Figen, and Orhan Aytür, "Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate," J. Opt. Soc. Am. B 20, 343-350 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-2-343


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605-608 (1970). [CrossRef]
  2. V. Petrov and F. Noack, “Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal,” Opt. Lett. 20, 2171-2173 (1995). [CrossRef] [PubMed]
  3. T. Kartalog˘lu, K. G. Ko¨pru¨lu¨, and O. Aytu¨r, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280-282 (1997). [CrossRef]
  4. K. G. Ko¨pru¨lu¨, T. Kartalog˘lu, Y. Dikmelik, and O. Aytu¨r, “Single-crystal sum-frequency-generating optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1546-1552 (1999). [CrossRef]
  5. O. Aytu¨r and Y. Dikmelik, “Plane-wave theory of self-doubling optical parametric oscillators,” IEEE J. Quantum Electron. 34, 447-458 (1998). [CrossRef]
  6. Y. Dikmelik, G. Akgu¨n, and O. Aytu¨r, “Plane-wave dynamics of optical parametric oscillation with simultaneous sum-frequency generation,” IEEE J. Quantum Electron. 35, 897-912 (1999). [CrossRef]
  7. G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803-810 (1998). [CrossRef]
  8. S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618-620 (1997). [CrossRef] [PubMed]
  9. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341-3343 (1997). [CrossRef]
  10. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19-10.71-μm frequency bridge,” Opt. Lett. 22, 1211-1213 (1997). [CrossRef] [PubMed]
  11. C. McGowan, D. T. Reid, Z. E. Penman, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, “Femtosecond optical paramet-ric oscillator based on periodically poled lithium niobate,” J. Opt. Soc. Am. B 15, 694-701 (1998). [CrossRef]
  12. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006-3008 (2001). [CrossRef]
  13. X. P. Zhang, J. Hebling, J. Kuhl, W. W. Ru¨hle, and H. Giessen, “Efficient intracavity generation of visible pulses in a femtosecond near-infrared optical parametric oscillator,” Opt. Lett. 26, 2005-2007 (2001). [CrossRef]
  14. J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generations in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578-5582 (1990). [CrossRef]
  15. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997). [CrossRef]
  16. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752-2755 (1997). [CrossRef]
  17. Y. Y. Zhu, R. F. Xiao, J. S. Fu, G. K. L. Wong, and N. B. Ming, “Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices,” Appl. Phys. Lett. 73, 432-434 (1998). [CrossRef]
  18. X. Liu, Z. Wang, J. Wu, and N. Ming, “Characterization of third-harmonic generation in Fibonacci optical superlattices,” Phys. Rev. A 58, 4956-4960 (1998). [CrossRef]
  19. Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattice,” Appl. Phys. Lett. 75, 448-450 (1999). [CrossRef]
  20. Y. B. Chen, Y. Y. Zhu, Y. Q. Qin, C. Zhang, S. N. Zhu, and N. B. Ming, “Second-harmonic and third-harmonic generation in a three-component Fibonacci optical superlattice,” J. Phys. Condens. Matter 12, 529-537 (2000). [CrossRef]
  21. Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577-579 (2001). [CrossRef]
  22. Y. Y. Zhu and N. B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. Quantum Electron. 31, 1093-1128 (1999). [CrossRef]
  23. K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649-1656 (1999). [CrossRef]
  24. K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2002). [CrossRef]
  25. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899-901 (2001). [CrossRef]
  26. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999). [CrossRef]
  27. B. Y. Gu, Y. Zhang, and B. Z. Dong, “Investigations of harmonic generations in aperiodic optical superlattices,” J. Appl. Phys. 87, 7629-7637 (2000). [CrossRef]
  28. Y. Zhang and B. Y. Gu, “Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification,” Opt. Commun. 192, 417-425 (2001). [CrossRef]
  29. H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728-730 (2001). [CrossRef]
  30. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  31. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  32. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  33. R. L. Byer, “Quasi-phasematched nonlinear interactions and devices,” J. Nonlinear Opt. Phys. Mater. 6, 549-592 (1997). [CrossRef]
  34. T. Kartalog˘lu, Z. G. Figen, and O. Aytu¨r, “A self-doubling optical parametric oscillator based on aperiodically-poled lithium niobate,” in 2001 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 243-244.
  35. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102-2116 (1995). [CrossRef]
  36. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432-444 (1979). [CrossRef]
  37. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057-2074 (1992). [CrossRef]
  38. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-375 (1984). [CrossRef]
  39. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited