OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 2 — Feb. 1, 2003
  • pp: 351–359

Propagation dynamics of optical vortices with anisotropic phase profiles

Guang-Hoon Kim, Hae June Lee, Jong-Uk Kim, and Hyyong Suk  »View Author Affiliations


JOSA B, Vol. 20, Issue 2, pp. 351-359 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000351


View Full Text Article

Enhanced HTML    Acrobat PDF (688 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Propagation dynamics of optical vortices with anisotropic phase profiles, where the slope of the helical wave front is not uniform in the azimuthal direction, is studied in the linear and nonlinear regimes. Numerical results show that the rotation rate of optical vortices is proportional to the anisotropy and is in good agreement with the analytical approach.

© 2003 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(350.5030) Other areas of optics : Phase
(350.5500) Other areas of optics : Propagation

Citation
Guang-Hoon Kim, Hae June Lee, Jong-Uk Kim, and Hyyong Suk, "Propagation dynamics of optical vortices with anisotropic phase profiles," J. Opt. Soc. Am. B 20, 351-359 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-2-351


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165-190 (1974). [CrossRef]
  2. J. M. Vaughan and D. V. Willetts, “Interference properties of a light beam having a helical wave surface,” Opt. Commun. 30, 263-267 (1979). [CrossRef]
  3. N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Philipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” Pis'ma Zh. Eksp. Teor. Fiz. 33, 206-210 (1981)[JETP Lett. 33, 195-199 (1981)].
  4. J. M. Vaughan and D. V. Willetts, “Temporal and interference fringe analysis of TEM01* laser modes,” J. Opt. Soc. Am. 73, 1018-1021 (1983). [CrossRef]
  5. P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403-408 (1989). [CrossRef]
  6. M. Brambilla, F. Battipede, L. A. Lugiato, V. Penna, F. Prati, C. Tamm, and C. O. Weiss, “Transverse laser patterns. I. Phase singularity crystals,” Phys. Rev. A 43, 5090-5113 (1991). [CrossRef] [PubMed]
  7. M. Brambilla, M. Cattaneo, L. A. Lugiato, R. Pirovano, F. Pratti, A. J. Kent, G. L. Oppo, A. B. Coates, C. O. Weiss, C. Green, E. J. D’Angelo, and J. R. Tredicce, “Dynamical transverse laser patterns. I. Theory,” Phys. Rev. A 49, 1427-1451 (1994). [CrossRef] [PubMed]
  8. M. S. El Naschie, ed., “Special issue on nonlinear optical structures, patterns, chaos,” Chaos, Solitons Fractals 4(8/9), 1251-1844 (1994).
  9. C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 7, 1034-1038 (1990). [CrossRef]
  10. Z. Jaroszewicz and A. Kolodziejczyk, “Zone plates performing generalized Hankel transforms and their metrological applications,” Opt. Commun. 102, 391-396 (1993). [CrossRef]
  11. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  12. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132 (1993). [CrossRef]
  13. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826-829 (1995). [CrossRef] [PubMed]
  14. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217-223 (1995). [CrossRef]
  15. K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  16. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593-1596 (1996). [CrossRef] [PubMed]
  17. G. Molina-Terriza, J. Recolons, and L. Torner, “The curious arithmetic of optical vortices,” Opt. Lett. 25, 1135-1137 (2000). [CrossRef]
  18. S. Minardi, G. Molina-Terriza, P. D. Trapani, J. P. Torres, and L. Torner, “Soliton algebra by vortex-beam splitting,” Opt. Lett. 26, 1004-1006 (2001). [CrossRef]
  19. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73-87 (1993). [CrossRef]
  20. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993). [CrossRef]
  21. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995). [CrossRef]
  22. F. S. Roux, “Dynamical behaviors of optical vortices,” J. Opt. Soc. Am. B 12, 1215-1221 (1995). [CrossRef]
  23. D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett. 79, 3399-3402 (1997). [CrossRef]
  24. G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 23902-23905 (2001). [CrossRef]
  25. G. Molina-Terriza, E. M. Wright, and L. Torner, “Propagation and control of noncanonical optical vortices,” Opt. Lett. 26, 163-165 (2001). [CrossRef]
  26. G. A. Swartzlander, Jr., and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503-2506 (1992). [CrossRef] [PubMed]
  27. G. A. Swartzlander, Jr., and C. T. Law, “The optical vortex soliton,” Opt. Photonics News 4(12), 10 (1993). [CrossRef]
  28. B. Luther-Davies, R. Powles, and V. Tikhonenko, “Nonlinear rotation of three-dimensional dark spatial solitons in a Gaussian laser beam,” Opt. Lett. 19, 1816-1818 (1994). [CrossRef] [PubMed]
  29. J. Christou, V. Tikhonenko, Y. S. Kivshar, and B. Luther-Davies, “Vortex soliton motion and steering,” Opt. Lett. 21, 1649-1651 (1996). [CrossRef] [PubMed]
  30. D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054-3065 (1997). [CrossRef]
  31. G. H. Kim, J. H. Jeon, Y. C. Noh, K. H. Ko, H. J. Moon, J. H. Lee, and J. S. Chang, “An array of phase singularities in a self-defocusing medium,” Opt. Commun. 147, 131-137 (1998). [CrossRef]
  32. G. H. Kim, J. H. Jeon, Y. C. Noh, J. H. Lee, J. S. Chang, K. H. Ko, and H. J. Moon, “Rotational characteristics of an array of optical vortices in a self-defocusing medium,” J. Korean Phys. Soc. 33, 308-314 (1998).
  33. Y. S. Kivshar, J. Christou, V. Tikhonenko, B. Luther-Davies, and L. M. Pismen, “Dynamics of optical vortex solitons,” Opt. Commun. 152, 198-206 (1998). [CrossRef]
  34. A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82, 1438-1441 (1999). [CrossRef]
  35. D. Rozas and G. A. Swartzlander, Jr., “Observed rotational enhancement of nonlinear optical vortices,” Opt. Lett. 25, 126-128 (2000). [CrossRef]
  36. C. T. Law, X. Zhang, and G. A. Swartzlander, Jr., “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55-57 (2000). [CrossRef]
  37. A. H. Carlsson, J. N. Malmberg, D. Anderson, M. Lisak, E. A. Ostrovskaya, T. J. Alexander, and Y. S. Kivshar, “Linear and nonlinear waveguides induced by optical vortex solitons,” Opt. Lett. 25, 660-662 (2000). [CrossRef]
  38. V. Tikhonenko and N. N. Akhmediev, “Excitation of vortex solitons in a Gaussian beam configuration,” Opt. Commun. 126, 108-112 (1996). [CrossRef]
  39. I. Velchev, A. Dreischuh, D. Neshev, and S. Dinev, “Interaction of optical vortex solitons superimposed on different background beams,” Opt. Commun. 130, 385-392 (1996). [CrossRef]
  40. I. Velchev, A. Dreischuh, D. Neshev, and S. Dinev, “Multiple-charged optical vortex solitons in bulk Kerr media,” Opt. Commun. 140, 77-82 (1997). [CrossRef]
  41. D. Neshev, A. Dreischuh, M. Assa, and S. Dinev, “Motion control of ensembles of ordered optical vortices generated on finite extent background,” Opt. Commun. 151, 413-421 (1998). [CrossRef]
  42. J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov, “Solitary-wave vortices in type II second-harmonic generation,” Opt. Commun. 149, 77-83 (1998). [CrossRef]
  43. P. D. Trapani, W. Chinaglia, S. Minardi, A. Piskarskas, and G. Valiulis, “Observation of quadratic optical vortex solitons,” Phys. Rev. Lett. 84, 3843-3846 (2000). [CrossRef] [PubMed]
  44. T. Ackemann, E. Kriege, and W. Lange, “Phase singularities via nonlinear beam propagation in sodium vapor,” Opt. Commun. 115, 339-346 (1995). [CrossRef]
  45. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Vortex evolution and bound pair formation in anisotropic nonlinear optical media,” Phys. Rev. Lett. 77, 4544-4547 (1996). [CrossRef] [PubMed]
  46. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Time-dependent evolution of an optical vortex in photorefractive media,” Phys. Rev. A 56, R1713-R1716 (1997). [CrossRef]
  47. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Marker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948-2951 (1997). [CrossRef]
  48. B. Luther-Davies and X. Yang, “Steerable optical waveguides formed in self-defocusing media by using dark spatial solitons,” Opt. Lett. 17, 1755-1757 (1992). [CrossRef] [PubMed]
  49. I. Freund, N. Shvartsman, and V. Freilikher, “Optical dislocation networks in highly random media,” Opt. Commun. 101, 247-264 (1993). [CrossRef]
  50. I. Freund, “Optical vortices in Gaussian random wave fields: statistical probability densities,” J. Opt. Soc. Am. A 11, 1644–1652 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited