OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 2 — Feb. 1, 2003
  • pp: 373–378

Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs

Thomas D. Happ, Martin Kamp, Alfred Forchel, Anatolii V. Bazhenov, Ilja I. Tartakovskii, Alexander Gorbunov, and Vladimir D. Kulakovskii  »View Author Affiliations

JOSA B, Vol. 20, Issue 2, pp. 373-378 (2003)

View Full Text Article

Acrobat PDF (610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the coupling of two single point-defect microcavities formed in a two-dimensional photonic-crystal slab. The mode structure is probed using photoluminescence spectroscopy of self-assembled InGaAs quantum dots embedded in GaAs/AlGaAs membrane-based, photonic-crystal microcavities. As a baseline, we start from single defect cavities: We observe defect states originating from both the ground and the first-excited slab waveguide mode, depending on the photonic-crystal lattice period. This is explained using three-dimensional, plane-wave-expansion calculations. In the case of coupling between two such single defects, a splitting of the mode energies into binding and antibinding states controlled by the coupling strength is observed. These photonic-defect–molecule states are identified by a comparison of their expected far-field distributions with polarization-dependent measurements.

© 2003 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

Thomas D. Happ, Martin Kamp, Alfred Forchel, Anatolii V. Bazhenov, Ilja I. Tartakovskii, Alexander Gorbunov, and Vladimir D. Kulakovskii, "Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs," J. Opt. Soc. Am. B 20, 373-378 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
  3. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380-3383 (1991).
  4. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275-285 (1999).
  5. T. Yoshie, A. Scherer, H. Chen, D. Hufaker, and D. Deppe, “Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters,” Appl. Phys. Lett. 79, 114-116 (2001).
  6. C. Reese, B. Gayral, B. D. Geradot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749-2752 (2001).
  7. T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289-4291 (2001).
  8. O. Painter and K. Srinivasan, “Polarization properties of dipolelike defect modes in photonic crystal nanocavities,” Opt. Lett. 27, 339-341 (2002).
  9. R. Coccioli, M. Borodsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectronics 145, S. 391-397 (1998).
  10. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282-2285 (2000).
  11. G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903-3906 (2001).
  12. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
  13. A. Imamoglu, D. D. Awschalom, G. Bukard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204-4207 (1999).
  14. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
  15. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
  16. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000).
  17. G. Tayeb and D. Maystre, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Am. A 14, 3323-3332 (1997).
  18. E. Centeno and D. Felbacq, “Rabi oscillations in bidimensional photonic crystals,” Phys. Rev. B 62, 10101-10108 (2000).
  19. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127-12133 (1998).
  20. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).
  21. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Miniband transmission in a photonic crystal, coupled-resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).
  22. C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487-1489 (2001).
  23. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
  24. O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
  25. G. Guttroff, M. Bayer, A. Forchel, P. A. Knipp, and T. L. Reinecke, “Isomeric photonic molecules formed from coupled microresonators,” Phys. Rev. E 63, 036611 (2001).
  26. T. Gutbrod, M. Bayer, A. Forchel, P. A. Knipp, T. L. Reinecke, A. Tartakovskii, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, “Angle dependence of the spontaneous emission from confined optical modes in photonic dots,” Phys. Rev. B 59, 2223–2229 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited