OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 2 — Feb. 1, 2003
  • pp: 391–401

Measurement of propagation constant in waveguides with wideband coherent terahertz spectroscopy

Sillas Hadjiloucas, Roberto K. H. Galvão, John W. Bowen, Rainer Martini, Martin Brucherseifer, Harm P. M. Pellemans, Peter Haring Bolı́var, Heinrich Kurz, John Digby, Geoffrey M. Parkhurst, and J. Martyn Chamberlain  »View Author Affiliations


JOSA B, Vol. 20, Issue 2, pp. 391-401 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000391


View Full Text Article

Enhanced HTML    Acrobat PDF (659 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A quasi-optical technique for characterizing micromachined waveguides is demonstrated with wideband time-resolved terahertz spectroscopy. A transfer-function representation is adopted for the description of the relation between the signals in the input and output port of the waveguides. The time-domain responses were discretized, and the waveguide transfer function was obtained through a parametric approach in the z domain after describing the system with an autoregressive with exogenous input model. The a priori assumption of the number of modes propagating in the structure was inferred from comparisons of the theoretical with the measured characteristic impedance as well as with parsimony arguments. Measurements for a precision WR-8 waveguide-adjustable short as well as for G-band reduced-height micromachined waveguides are presented.

© 2003 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(300.6270) Spectroscopy : Spectroscopy, far infrared
(310.6870) Thin films : Thin films, other properties
(320.5540) Ultrafast optics : Pulse shaping
(350.4010) Other areas of optics : Microwaves

Citation
Sillas Hadjiloucas, Roberto K. H. Galvão, John W. Bowen, Rainer Martini, Martin Brucherseifer, Harm P. M. Pellemans, Peter Haring Bolívar, Heinrich Kurz, John Digby, Geoffrey M. Parkhurst, and J. Martyn Chamberlain, "Measurement of propagation constant in waveguides with wideband coherent terahertz spectroscopy," J. Opt. Soc. Am. B 20, 391-401 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-2-391


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Beatty, G. F. Engen, and W. J. Anson, “Measurement of reflection and losses of waveguide joints and connectors using microwave reflectometer techniques,” IRE Trans. Instrum. 9, 219-226 (1960). [CrossRef]
  2. G. F. Engen, “An extension to the sliding short method of connector and adapter evaluation,” J. Res. Natl. Bur. Stand. 75, 177-183 (1971).
  3. M. P. Weidman, “A semi-automated six port for measuring millimeter-wave power and complex reflection coefficient,” IEEE Trans. Microwave Theory Tech. 25, 1083-1085 (1977). [CrossRef]
  4. G. F. Engen, “The six port reflectometer: an alternative network analyzer,” IEEE Trans. Microwave Theory Tech. 25, 1075-1083 (1977). [CrossRef]
  5. G. F. Engen, “A (historical) review of the six-port measurement technique,” IEEE Trans. Microwave Theory Tech. 45, 2414-2417 (1997). [CrossRef]
  6. G. F. Engen, “Calibration of an arbitrary six-port junction for measurement of active and passive circuit parameters,” IEEE Trans. Instrum. Meas. 22, 295-299 (1973). [CrossRef]
  7. G. F. Engen, “Calibrating the six-port reflectometer by means of sliding terminations,” IEEE Trans. Microwave Theory Tech. 26, 951-957 (1978). [CrossRef]
  8. T. E. Hodgetts, “A numerically stable algorithm for calibrating single six-ports for national microwave reflectometry,” NPL Rep. DES 102 (National Physical Laboratory, Teddington, UK, 1990).
  9. H. J. Eul and B. Schiek, “A generalized theory and new calibration procedures for network analyzer self-calibration,” IEEE Trans. Microwave Theory Tech. 39, 724-731 (1991). [CrossRef]
  10. K. J. Silvonen, “A general approach to network analyzer calibration,” IEEE Trans. Microwave Theory Tech. 40, 754-759 (1992). [CrossRef]
  11. G. F. Engen and C. A. Hoer, “Thru-Reflect-Line: an improved technique for calibrating the dual six-port automatic network analyzer,” IEEE Trans. Microwave Theory Tech. 27, 987-993 (1979). [CrossRef]
  12. G. F. Engen, “Calibration technique for automated network analyzers with application to adapter evaluation,” IEEE Trans. Microwave Theory Tech. 22, 1255-1260 (1974). [CrossRef]
  13. C. A. Hoer, “Performance of a dual six port network analyzer,” IEEE Trans. Microwave Theory Tech. 27, 993-998 (1979). [CrossRef]
  14. B. Knudsen, G. F. Engen, and B. Guldbrandsen, “Accuracy assessment of the scalar network analyzer using sliding termination techniques,” IEEE Trans. Instrum. Meas. 38, 480-483 (1989). [CrossRef]
  15. D. J. Bannister, E. J. Griffin, and T. E. Hodgetts, “On the dimensional tolerances of rectangular waveguide for reflectometry at millimetric wavelengths,” NPL Rep. DES 95 (National Physical Laboratory, Teddington, UK, 1989).
  16. J. R. Birch and R. N. Clarke, “Dielectric and optical measurements from 30 to 1000 GHz,” J. Inst. Electron. Rad. Eng. 52, 565-584 (1982).
  17. L. C. Oldfield, J. P. Ide, and E. J. Griffin, “A multistate reflectometer,” IEEE Trans. Instrum. Meas. 25, 198-201 (1985). [CrossRef]
  18. D. Thompson, R. D. Pollard, and R. E. Miles, “One-port S-parameter measurements using quasi-optical multistate reflectometer,” Electron. Lett. 34, 1222-1224 (1998). [CrossRef]
  19. S. Hadjiloucas, J. W. Bowen, J. W. Digby, J. M. Chamberlain, and D. P. Steenson, “Quasi-optical characterization of waveguides at frequencies above 100 GHz,” J. M. Chamberlain and P. Harrison, eds., Conference on Terahertz Spectroscopy and Applications, Munich, Proc. SPIE 3828, 357-365 (1999). [CrossRef]
  20. J. W. Bowen, S. Hadjiloucas, and L. S. Karatzas, “Characteristic impedance measurements of a WR-10 waveguide sample with a dispersive Fourier transform spectrometer,” in Applied Optics and Optoelectronics, A. T. Augousti, ed. (Institute of Physics, Bristol, UK, 1998), pp. 181-186.
  21. J. W. Digby, C. E. McIntosh, G. M. Parkhurst, B. M. Towlson, S. Hadjiloucas, J. W. Bowen, J. M. Chamberlain, R. D. Pollard, R. E. Miles, D. P. Steenson, L. S. Karatzas, N. J. Cronin, and S. R. Davies, “Fabrication and characterization of micro-machined rectangular waveguide components for use at millimeter wave and terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 48, 1293-1303 (2000). [CrossRef]
  22. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultra-wideband, short Pulses of THz radiation through sub-mm diameter circular waveguides,” Opt. Lett. 24, 1431-1433 (1999). [CrossRef]
  23. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “THz waveguides,” J. Opt. Soc. Am. B 17, 851-863 (2000). [CrossRef]
  24. D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by THz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122-1135 (2000). [CrossRef]
  25. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987-1989 (2000). [CrossRef]
  26. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449-4451 (2000). [CrossRef]
  27. R. Mendis and D. Grischkowsky, “Undistorted guided wave propagation of subpicosecond THz pulses,” Opt. Lett. 26, 846-848 (2001). [CrossRef]
  28. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255-260 (1988). [CrossRef]
  29. M. C. Nuss and J. Orenstein, “Millimeter and submillimeter wave spectroscopy of solids,” in Topics Current Chemistry, E. Gru¨ner, ed. (Springer-Verlag, Heidelberg 1998), Vol. 74, pp. 7-50.
  30. P. Haring Bolivar, “Coherent THz spectroscopy,” in Semiconductor Quantum Optoelectronics: From Quantum Physics to Smart Devices, A. Miller, M. Ebrahimzahdeh, and D. M. Finlayson, eds. (Institute of Physics, Bristol, UK, 1999), Chap. 5, pp. 151-192.
  31. P. Haring Bolívar, M. Brucherseifer, H. P. M. Pellemans, and H. Kurz, “Time domain THz spectroscopy and sensing,” in THz Sources and Systems, R. E. Miles, P. Harrison, and D. Lippens, eds. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 315-328.
  32. S. M. Kay and S. L. Marple, Jr., “Spectrum analysis, a modern perspective,” Proc. IEEE 69, 1380-1419 (1981). [CrossRef]
  33. S. T. D. Dorney, R. G. Barasniuk, and D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18, 1562-1571 (2001). [CrossRef]
  34. L. Ljung, System Identification, Theory for the User, 2nd ed. (Prentice Hall, Upper Saddle River, N.J., 1999).
  35. J. R. Birch and T. J. Parker, “Dispersive Fourier transform spectrometry,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, Orlando, Fla., 1979), Vol. 2, Chap. 3, pp. 137-271.
  36. N. Marcuvitz, Waveguide Handbook (Peregrinus, London, 1993).
  37. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, 1992).
  38. M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, Wavelet Toolbox User’s Guide (Mathworks, Natick, Mass., 1996).
  39. S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Pattern Anal. 11, 674-693 (1989). [CrossRef]
  40. H. Krim, D. Tucker, S. G. Mallat, and D. Donoho, “On denoising and best signal representation,” IEEE Trans. Inf. Theory 45, 2225-2238 (1999). [CrossRef]
  41. I. Daubechies, S. Mallat, and A. S. Willsky, “Special issue on wavelet transforms and multiresolution signal analysis: introduction,” IEEE Trans. Inf. Theory 38, 529-531 (1992).
  42. S. Qian and D. Chen, Joint Time-Frequency Analysis—Methods and Applications (Prentice-Hall, Upper Saddle River, N.J., 1996).
  43. U. L. Pen, “Application of wavelets to filtering of noisy data,” Philos. Trans. R. Soc. London, Ser. A 357, 2561–2571 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited