OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 449–461

Global optimization of sensitivity and dynamic range for two-center holographic recording

Omid Momtahan and Ali Adibi  »View Author Affiliations

JOSA B, Vol. 20, Issue 3, pp. 449-461 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of two-center holographic recording is theoretically studied and described in detail. We present a systematic method for global optimization of two-center holographic recording. Whereas the method presented is general, we perform optimization for lithium niobate crystals doped with iron and manganese (LiNbO3:Fe:Mn). Both dynamic range (M/#) and sensitivity (S) are considered for global optimization, and the optimum design parameters for LiNbO3:Fe:Mn crystals are predicted. To achieve optimization we use both an analytic approach and a complete numerical approach. The absorption of light in the crystal is also considered. We show that the optimum design parameters for maximizing M/# are different from those for maximizing S. Therefore a trade-off exists between dynamic range and sensitivity. We also describe the complete dependence of S in two-center recording on the design parameters. We show in particular, for the first time to our knowledge, that S depends on the ratio of recording and sensitizing intensities and not on the absolute intensities.

© 2003 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(160.2900) Materials : Optical storage materials
(210.2860) Optical data storage : Holographic and volume memories

Omid Momtahan and Ali Adibi, "Global optimization of sensitivity and dynamic range for two-center holographic recording," J. Opt. Soc. Am. B 20, 449-461 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993). [CrossRef] [PubMed]
  2. J. F. Heanue, M. C. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994). [CrossRef] [PubMed]
  3. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995). [CrossRef]
  4. D. Psaltis and G. W. Burr, “Holographic data storage,” IEEE Comput. 31 (2), 52–60 (1998). [CrossRef]
  5. D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972). [CrossRef]
  6. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996). [CrossRef]
  7. O. Mikami, “Cu-diffused layers in LiNbO3 for reversible holographic storage,” Opt. Commun. 11, 30–32 (1975). [CrossRef]
  8. P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987). [CrossRef]
  9. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  10. X. An, D. Psaltis, and G. W. Burr, “Thermal fixing of 10, 000 holograms in LiNbO3:Fe,” Appl. Opt. 38, 386–393 (1999). [CrossRef]
  11. F. Micheron and G. Bismuth, “Electrical control of fixing and erasure of holographic pattern in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972). [CrossRef]
  12. J. A. Ma, T. Chang, J. Hong, R. Neurgaonkar, G. Barbastathis, and D. Psaltis, “Electrical fixing of 1000 angle-multiplexed holograms in SBN:75,” Opt. Lett. 22, 1116–1118 (1997). [CrossRef] [PubMed]
  13. H. C. Kulich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987). [CrossRef]
  14. E. Chuang and D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt. 36, 8445–8454 (1997). [CrossRef]
  15. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive process for optical storage in LiNbO3” Appl. Phys. Lett. 25, 155–157 (1974). [CrossRef]
  16. K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993). [CrossRef]
  17. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998). [CrossRef] [PubMed]
  18. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998). [CrossRef]
  19. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998). [CrossRef]
  20. A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001). [CrossRef]
  21. A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999). [CrossRef]
  22. C. Moser, B. Schupp, and D. Psaltis, “Localized holographic recording in doubly doped lithium niobate,” Opt. Lett. 25, 162–164 (2000). [CrossRef]
  23. Y. Liu, L. Liu, and C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000). [CrossRef]
  24. A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000). [CrossRef]
  25. Y. W. Liu, L. R. Liu, Y. C. Guo, and C. H. Zhou, “The dynamics of holographic storage in doubly doped LiNbO3:Fe:Mn,” Acta Phys. Sin. 49, 880–886 (2000).
  26. Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Y. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000). [CrossRef]
  27. Y. W. Liu, L. R. Liu, C. H. Zhou, and L. Xu, “Photorefractive holographic dynamics in doubly doped LiNbO3:Fe:Mn,” Chin. Phys. Lett. 17, 571–573 (2000). [CrossRef]
  28. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tao, “Angle-multiplexed hologram storage in LiNbO3:Tb, Fe,” Opt. Lett. 25, 1337–1339 (2000). [CrossRef]
  29. I. G. Kim, M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, L. Galambos, and L. Hesselink, “Volume holographic storage in near-stoichiometric LiNbO3:Ce:Mn,” Jpn. J. Appl. Phys., Part 2 39, L1094–L1069 (2000). [CrossRef]
  30. R. Fujimura, S. Ashihara, O. Matoba, T. Shimura, and K. Kuroda, “Enhancement of nonvolatile recording by an external field in doubly doped lithium niobate,” in Photorefractive Effects, Materials, and Devices, Vol. 62 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 212–216.
  31. A. Adibi, K. Buse, and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001). [CrossRef]
  32. D. Liu, L. R. Liu, C. H. Zhou, J. Zhang, and L. Y. Xu, “Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Microwave Opt. Technol. Lett. 32, 423–425 (2002). [CrossRef]
  33. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]
  34. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  35. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical network using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988). [CrossRef]
  36. A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly doped and doubly doped lithium niobate,” Appl. Opt. 40, 5175–5182 (2001). [CrossRef]
  37. C. Gu, J. Hong, H. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991). [CrossRef]
  38. I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000). [CrossRef]
  39. Y. P. Yang, K. Buse, and D. Psaltis, “Photorefractive recording in LiNbO3:Mn,” Opt. Lett. 27, 158–160 (2002). [CrossRef]
  40. Y. W. Liu, L. R. Liu, D. A. Liu, L. Y. Xu, C. H. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Opt. Commun. 190, 339–343 (2001). [CrossRef]
  41. E. Kratzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976). [CrossRef]
  42. E. Kratzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited