OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 462–468

High-spectral-purity laser system for the AURIGA detector optical readout

Livia Conti, Maurizio De Rosa, and Francesco Marin  »View Author Affiliations


JOSA B, Vol. 20, Issue 3, pp. 462-468 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000462


View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a low-frequency-noise laser system conceived for the readout of small mechanical vibrations. The system consists of a Nd:YAG source stabilized to a high-finesse Fabry–Perot cavity and achieves the best performance in the range 1–10 kHz with a minimum residual noise of 4×10-3 Hz/Hz. We perform an extended characterization of the frequency stability by means of an independent optical cavity and we also measure the residual fluctuations after transmission through an optical fiber. Our apparatus is optimized for use in an optical readout for the gravitational wave detector AURIGA, where a laser system with the characteristics reported here will allow an improvement of one order of magnitude in the detector sensitivity.

© 2003 Optical Society of America

OCIS Codes
(000.2780) General : Gravity
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3940) Instrumentation, measurement, and metrology : Metrology

Citation
Livia Conti, Maurizio De Rosa, and Francesco Marin, "High-spectral-purity laser system for the AURIGA detector optical readout," J. Opt. Soc. Am. B 20, 462-468 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-3-462


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For a comprehensive review of the most recent results of GW research see the special issue of Class. Quantum Grav. 19, 1227–2049 (2002).
  2. V. V. Kulagin, A. G. Polnarev, and V. N. Rudenko, “A combined optical-acoustical gravitational antenna,” Sov. Phys. JETP 64, 915–921 (1986).
  3. J.-P. Richard, “Laser instrumentation for one-phonon sensitivity and wide bandwidth with multimode gravitational radiation detectors,” J. Appl. Phys. 64, 2202–2205 (1988). [CrossRef]
  4. J.-P. Richard, “Approaching the quantum limit with optically instrumented multimode gravitational-wave bar detectors,” Phys. Rev. D 46, 2309–2317 (1992). [CrossRef]
  5. Y. Pang and J.-P. Richard, “Room-temperature tests of an optical transducer for resonant gravitational wave detectors,” Appl. Opt. 34, 4982–4988 (1995). [CrossRef] [PubMed]
  6. A. Giazotto, “Interferometric detection of gravitational waves,” Phys. Rep. 182, 365–424 (1989). [CrossRef]
  7. N. Mio and K. Tsubono, “Vibration transducer using an ultrashort Fabry–Perot cavity,” Appl. Opt. 34, 186–189 (1995). [CrossRef] [PubMed]
  8. G. A. Prodi, L. Conti, R. Mezzena, S. Vitale, L. Taffarello, J.-P. Zendri, L. Baggio, M. Cerdonio, A. Colombo, V. Crivelli-Visconti, R. Macchietto, P. Falferi, M. Bonaldi, A. Ortolan, G. Vedovato, E. Cavallini, and P. Fortini, “Initial operation of the gravitational wave detector AURIGA,” in Gravitational Waves, Proceedings of the Second Edoardo Amaldi Conference, E. Coccia, G. Pizzella, and G. Veneziano, eds. (World Scientific, Singapore, 1998), pp. 148–158. For more information, see also http://www.auriga.lnl.infn.it.
  9. L. Conti, M. Cerdonio, L. Taffarello, J. P. Zendri, A. Ortolan, C. Rizzo, G. Ruoso, G. A. Prodi, S. Vitale, G. Cantatore, and E. Zavattini, “Optical transduction chain for gravitational wave bar detectors,” Rev. Sci. Instrum. 69, 554–558 (1998). [CrossRef]
  10. M. De Rosa, L. Baggio, M. Cerdonio, L. Conti, G. Galet, F. Marin, A. Ortolan, G. A. Prodi, L. Taffarello, G. Vedovato, S. Vitale, and J. P. Zendri, “First room temperature operation of the AURIGA optical readout,” Class. Quantum Grav. 19, 1919–1924 (2002). [CrossRef]
  11. S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic optical resonator: a new tool for laser frequency stabilisation at the 1 Hz level,” Phys. Rev. Lett. 78, 4741–4744 (1997). [CrossRef]
  12. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible laser with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999). [CrossRef]
  13. J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, “Visible lasers with subhertz linewidths,” Opt. Commun. 91, 131–139 (1992). [CrossRef]
  14. M. Musha, T. Kanaya, K. Nakagawa, and K. Ueda, “The short- and long-term frequency stabilization of an injection-locked Nd:YAG laser in reference to a Fabry–Perot cavity and an iodine saturated absorption line,” Opt. Commun. 183, 165–173 (2000). [CrossRef]
  15. F. Bondu, P. Fritschel, C. N. Man, and A. Brillet, “Ultrahigh-spectral-purity laser for the VIRGO experiment,” Opt. Lett. 21, 582–584 (1996). [CrossRef] [PubMed]
  16. D. A. Clubley, K. D. Skeldon, B. W. Barr, G. P. Newton, K. A. Strain, and J. Hough, “Ultrahigh level of frequency stabilisation of an injection locked Nd:YAG laser with relevance to gravitational wave detection,” Opt. Commun. 186, 177–184 (2000). [CrossRef]
  17. L.-S. Ma, P. Jungner, J. Ye, and J. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994). [CrossRef] [PubMed]
  18. L. Conti, M. De Rosa, and F. Marin, “Low-amplitude-noise laser for AURIGA detector optical readout,” Appl. Opt. 39, 5732–5738 (2000). [CrossRef]
  19. R. W. P. Drever, J. L. Hall, F. Kowalski, J. Hough, G. M. Ford, A. J. Mulney, and H. Ward, “Laser phase frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  20. L. Conti, “An optical readout for the AURIGA resonant gravitational wave detector,” Ph.D. thesis (University of Trento, Trento, Italy, 1999) http://www.auriga.lnl.infn.it/publications/publications.html.
  21. All the spectra reported in this work are one-sided, i.e., reported to positive frequencies.
  22. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  23. J. Hall, “Frequency stabilized lasers—a driving force for new spectroscopies,” in Frontiers in Laser Spectroscopy, Proceedings of the International School of Physics “Enrico Fermi”: Course 120, T. W. Hansch and M. Inguscio, eds. (North-Holland, Amsterdam, 1994).
  24. J.-P. Zendri, L. Baggio, M. Bignotto, M. Bonaldi, M. Cerdonio, L. Conti, M. De Rosa, P. Falferi, P. L. Fortini, M. Inguscio, A. Marin, F. Marin, R. Mezzena, A. Ortolan, G. A. Prodi, E. Rocco, F. Salemi, G. Soranzo, L. Taffarello, G. Vedovato, A. Vinante, and S. Vitale, “Status report and near future prospects for the gravitational wave detector AURIGA,” Class. Quantum Grav. 19, 1925–1933 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited