OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 469–478

Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant

Rolando Ferrini, Romuald Houdré, Henri Benisty, Min Qiu, and Jürgen Moosburger  »View Author Affiliations


JOSA B, Vol. 20, Issue 3, pp. 469-478 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000469


View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Waveguide modes in two-dimensional (2-D) photonic crystals (PhCs) deeply etched through monomode slab waveguides, e.g., AlGaAs/GaAs, GaAs/AlOx, or InP/GaInAsP, suffer from radiation losses that are strongly affected by the air hole depth and shape. The issue of three-dimensional (3-D) out-of-plane losses is addressed analytically by means of an incoherent approximation. Assuming separability both for the dielectric map and for the electric field, this approach is valid for defects such as in-plane microcavities, PhC-based waveguides, bends and couplers. Out-of-plane scattering is translated into an effective imaginary index in the air holes, so that 3-D losses can be cast in a simple 2-D calculation. The case of cylindroconical holes is treated, and the validity of this approach is experimentally confirmed by transmission measurements through simple PhC slabs.

© 2003 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3060) Integrated optics : Infrared
(130.3130) Integrated optics : Integrated optics materials
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials

Citation
Rolando Ferrini, Romuald Houdré, Henri Benisty, Min Qiu, and Jürgen Moosburger, "Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant," J. Opt. Soc. Am. B 20, 469-478 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-3-469


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton University, Princeton, N.J., 1995).
  2. H. Benisty, S. Olivier, M. Rattier, and C. Weisbuch, “Applications of two-dimensional photonic crystals to semiconductor optoelectronics devices,” in Photonic Crystals and Light Localization in the 21st Century, C. M. Soukoulis, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 117–127.
  3. A. Sharkawy, S. Shi, and D. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001). [CrossRef]
  4. U. Gruning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747–749 (1996). [CrossRef]
  5. S. W. Leonard, H. M. van Driel, K. Busch, S. John, A. Birner, A. P. Li, F. Muller, U. Gosele, and V. Lehmann, “Attenuation of optical transmission within the band gap of thin two-dimensional macroporous silicon photonic crystals,” Appl. Phys. Lett. 75, 3063–3065 (1999). [CrossRef]
  6. S. Rowson, A. Chelnokov, and J. M. Lourtioz, “Two-dimensional photonic crystals in macroporous silicon: from mid-infrared (10 μm) to telecommunication wavelengths (1.3–1.5 μm),” J. Lightwave Technol. 17, 1989–1995 (1999). [CrossRef]
  7. R. B. Wehrspohn, A. Birner, J. Schilling, F. Mueller, R. Hillebrand, and U. Gösele, “Photonic crystals from macroporous silicon,” in Photonic Crystals and Light Localization in the 21st Century, C. M. Soukoulis, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 143–153.
  8. J. Schilling, R. B. Wehrspohn, A. Birner, F. Muller, R. Hillebrand, U. Gosele, S. W. Leonard, J. P. Mondia, F. Genereux, H. M. van Driel, P. Kramper, V. Sandoghdar, and K. Busch, “A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon,” J. Opt. A. Pure Appl. Opt. 3, S121–S132 (2001). [CrossRef]
  9. A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906–3910 (1998). [CrossRef]
  10. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000). [CrossRef]
  11. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 71, 738–740 (1997). [CrossRef]
  12. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De la Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999). [CrossRef]
  13. R. Ferrini, D. Leuenberger, M. Mulot, M. Qiu, J. Moosburger, M. Kamp, A. Forchel, S. Anand, and R. Houdré, “Optical study of two-dimensional InP-based photonic crystals by internal light source technique,” IEEE J. Quantum Electron. 38, 786–799 (2002). [CrossRef]
  14. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000). [CrossRef]
  15. P. Lalanne and H. Benisty, “Out-of-plane losses of two-dimensional photonic crystals waveguides: electromagnetic analysis,” J. Appl. Phys. 89, 1512–1514 (2001). [CrossRef]
  16. H. Benisty, P. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, “Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Electron. 34, 205–215 (2002). [CrossRef]
  17. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photonics Technol. Lett. 13, 565–567 (2001). [CrossRef]
  18. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999). [CrossRef]
  19. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000). [CrossRef] [PubMed]
  20. N. Fukaya, D. Ohsaki, and T. Baba, “Two-dimensional photonic crystal waveguides with 60 degrees bends in a thin slab structure,” Jpn. J. Appl. Phys. 39, 2619–2623 (2000). [CrossRef]
  21. A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. I. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002). [CrossRef]
  22. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79 (15), 2312–2314 (2001). [CrossRef]
  23. N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, Y. Katayama, N. Kawai, and K. Inoue, “Design, nano-fabrication and analysis of near-infrared 2D photonic crystal air-bridge structures,” Opt. Quantum Electron. 34, 123–131 (2002). [CrossRef]
  24. T. F. Krauss, R. M. DeLaRue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996). [CrossRef]
  25. S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, K. Asakawa, N. Kawai, and K. Inoue, “Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,” J. Appl. Phys. 89, 855–858 (2001). [CrossRef]
  26. A. Talneau, L. Le Gouezigou, and N. Bouadma, “Quantitative measurement of low propagation losses at 1.55 μm on planar photonic crystal waveguides,” Opt. Lett. 26, 1259–1261 (2001). [CrossRef]
  27. T. F. Krauss, “Patterned photonic crystal waveguides,” in Photonic Crystals and Light Localization in the 21st Century, C. M. Soukoulis, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 129–142.
  28. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997). [CrossRef]
  29. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, D. Cassagne, C. Jouanin, R. Houdré, U. Oesterle, and V. Bardinal, “Diffraction efficiency and guided light control by two-dimensional photonic-bandgap lattices,” IEEE J. Quantum Electron. 35, 1045–1052 (1999). [CrossRef]
  30. B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155–1159 (1998). [CrossRef]
  31. M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001). [CrossRef]
  32. D. M. Atkin, P. S. J. Russell, T. A. Birks, and P. J. Robert, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996). [CrossRef]
  33. The slope of the curve in Fig. 7 of Ref. 16.
  34. M. Qiu, B. Jaskorzynska, M. Swillo, and H. Benisty, “Time-domain 2D modeling of slab-waveguide based photonic-crystal devices in the presence of out-of-plane radiation losses,” Microwave Opt. Technol. Lett. 34, 387–393 (2002). [CrossRef]
  35. Given a refractive-index contrast of nguide/nair =3, the average optical path of the guided wave inside the air holes is less than 10% for f≤0.30.
  36. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991). [CrossRef]
  37. H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996). [CrossRef] [PubMed]
  38. L. C. Andreani and M. Agio, “Photonic bands and gap maps in a photonic crystal slab,” IEEE J. Quantum Electron. 38, 891–898 (2002). [CrossRef]
  39. D. J. Ripin, K. Y. Lim, G. S. Petrich, P. R. Villeneuve, S. H. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, “One-dimensional photonic bandgap microcavities for strong optical confinement in GaAs and GaAs/AlxOy semiconductor waveguides,” J. Lightwave Technol. 17, 2152–2160 (1999). [CrossRef]
  40. J. Moosburger, M. Kamp, A. Forchel, R. Ferrini, D. Leuenberger, R. Houdré, S. Anand, and J. Berggren, “Nanofabrication of high quality photonic crystals for integrated optics circuits,” Nanotechnology 13, 341–345 (2002). [CrossRef]
  41. M. Qiu and S. L. He, “Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions,” Phys. Rev. B 61, 12871–12876 (2000). [CrossRef]
  42. M. Qiu and S. L. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys. 87, 8268–8275 (2000). [CrossRef]
  43. M. Qiu and S. L. He, “Guided modes in a two-dimensional metallic photonic crystal waveguide,” Phys. Lett. A 266, 425–429 (2000). [CrossRef]
  44. M. Qiu and S. L. He, “FDTD algorithm for computing the off-plane band structure in a two-dimensional photonic crystal with dielectric or metallic inclusions,” Phys. Lett. A 278, 348–354 (2001). [CrossRef]
  45. The effective air fill factor value obtained from the fit is checked to fall within the range set by the SEM analysis that is influenced by the local hole shape fluctuations that are due to sample preparation, by the average on a limited number of holes, and by the cylindroconical hole shape.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited