OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 529–537

Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation

Kenji Kamada, Kinu Matsunaga, Akihiro Yoshino, and Koji Ohta  »View Author Affiliations

JOSA B, Vol. 20, Issue 3, pp. 529-537 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Accumulated thermal effect (ATE), which can be an artifact in femtosecond closed-aperture Z-scan measurements, was investigated by varying the repetition rate of the incident pulse for a dye solution in CHCl3. It was found that the measurement is affected by two-photon-absorption-induced ATE, even at a low repetition rate of 1 kHz. The relaxation time of the ATE was found to be tens of milliseconds by time-resolved thermal-lens experiments and simulations, which is consistent with the observed repetition-rate dependence of the Z-scan measurements. The simulations for various commonly used solvents also exhibited that the ATE can be prominent in hydrocarbon and halogenated hydrocarbon solvents and inconspicuous in alcohols and water.

© 2003 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(190.4870) Nonlinear optics : Photothermal effects
(190.5940) Nonlinear optics : Self-action effects
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

Kenji Kamada, Kinu Matsunaga, Akihiro Yoshino, and Koji Ohta, "Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation," J. Opt. Soc. Am. B 20, 529-537 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  2. E. W. Van Stryland and M. Sheik-Bahae, “Z-scan,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M. G. Kuzyk and C. W. Dirk, eds., (Marcel Dekker, New York, 1998), pp. 655–692.
  3. O. Varnavski, R. G. Ispasoiu, M. Narewal, J. Fugaro, Y. Jin, H. Pass, and T. Goodson III, “Nonlinear optical properties of water-soluble polymeric dyes with biological applications,” Macromolecules 33, 4061–4068 (2000). [CrossRef]
  4. S. Tatsuura, O. Wada, M. Tian, M. Furuki, Y. Sato, I. Iwasa, L. S. Pu, and H. Kawashima, “Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique,” Appl. Phys. Lett. 79, 2517–2519 (2001). [CrossRef]
  5. G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, J. Liu, G. He, Y. Li, and R. Wang, “Investigations of third-order nonlinear optical response of poly(p-phenylenevinylene) derivatives by femtosecond optical Kerr effect,” Physica B 305, 147–154 (2001). [CrossRef]
  6. A. Mito and H. Moriwaki, “Dispersion of third order nonlinear optical constants in high-refractive-index glasses associated with two-photon absorption,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 188–195 (1999). [CrossRef]
  7. M. J. Shin, and J. W. Wu, “Femtosecond measurement of the third order nonlinear optical coefficients of CuPc, CoPc, and ZnPc thin films using Z-scan measurement method,” in Conference on Lasers and Electro-Optics (CLEO/Pacific Rim), 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 867–868.
  8. M. Falconieri, R. D’Amato, A. Furlani, and M. V. Russo, “Z-scan measurements of third-order optical non-linearities in poly(phenylacetylenes),” Synth. Met. 124, 217–219 (2001). [CrossRef]
  9. K. S. Bindra and A. K. Kar, “Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses,” Appl. Phys. Lett. 79, 3761–3763 (2001). [CrossRef]
  10. R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin. 94–95, 559–563 (2001). [CrossRef]
  11. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994). [CrossRef]
  12. Y. L. Huang, C. K. Sun, J. C. Liang, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Femtosecond Z-scan measurement of GaN,” Appl. Phys. Lett. 75, 3524–3526 (1999). [CrossRef]
  13. C. K. Sun, J. C. Liang, J. C. Wang, Fu. J. Kao, S. Keller, M. P. Mack, U. K. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000). [CrossRef]
  14. H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles,” Opt. Mater. 14, 321–327 (2000). [CrossRef]
  15. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15, 237–242 (2001). [CrossRef]
  16. B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, “PbS-polymer nanocomposite with third-order nonlinear optical response in femtosecond regime,” Mater. Lett. 51, 461–469 (2001). [CrossRef]
  17. G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002). [CrossRef]
  18. K. Y. Tseng, K. S. Wong, and G. K. L. Wong, “Femtosecond time-resolved Z-scan investigations of optical nonlinearities in ZnSe,” Opt. Lett. 21, 180–182 (1996). [CrossRef] [PubMed]
  19. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). [CrossRef]
  20. J. R. Whinnery, “Laser measurement of optical absorption in liquids,” Acc. Chem. Res. 7, 255–231 (1974). [CrossRef]
  21. S. S. Gupte, A. Marcano O., R. D. Pradhan, C. F. Desai, and N. Melikechi, “Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc(tris)thiourea sulfate,” J. Appl. Phys. 89, 4939–4943 (2001). [CrossRef]
  22. A. Marcano, C. Loper, and N. Melikechi, “Pump–probe mode-mismatched thermal-lens Z scan,” J. Opt. Soc. Am. B 19, 119–124 (2002). [CrossRef]
  23. A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming. I. Theory,” Chem. Phys. 20, 253–258 (1977). [CrossRef]
  24. M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelength,” J. Appl. Phys. 75, 3732–3737 (1994). [CrossRef]
  25. M. L. Baesso, A. C. Bento, A. A. Andrade, T. Catunda, J. A. Sampaio, and S. Gama, “Neodymium concentration dependence of thermo-optical properties in low silica calcium aluminate glasses,” J. Non-Cryst. Solids 219, 165–169 (1997). [CrossRef]
  26. S. M. Lima, J. A. Sampaio, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and F. C. G. Grandra, “Time-resolved thermal lens measurements of third-order optical properties of fluoride glasses,” J. Non-Cryst. Solids 256–257, 337–342 (1999). [CrossRef]
  27. J. H. Rohling, A. M. F. Caldeira, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, L. C. M. Miranda, and A. F. Rubira, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001). [CrossRef]
  28. M. L. Baesso, A. C. Bento, A. A. Andre, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998). [CrossRef]
  29. M. Terazima and N. Hirota, “Population lens in thermal lens spectroscopy,” J. Phys. Chem. 96, 7147–7150 (1992). [CrossRef]
  30. M. Terazima, T. Hara, and N. Hirota, “Population lens in thermal lens spectroscopy. 2. Probe wavelength dependence and a new method for subtracting the transient absorption from the thermal lens signal,” J. Phys. Chem. 97, 10554–10560 (1993). [CrossRef]
  31. M. Terazima, T. Hara, and N. Hirota, “Separation of transient absorption and population lens effect from the “thermal lens” signal,” J. Phys. Chem. 97, 13668–13672 (1993). [CrossRef]
  32. M. Terazima, “Ultrafast transient Kerr lens in solution detected by the dual-beam thermal lens methods,” Opt. Lett. 20, 25–27 (1995). [CrossRef] [PubMed]
  33. M. Terazima, “Ultrafast rise of translational temperature after photoexcitation to electronic excited state in solution: transient lens study of Ni2+ aqueous solution,” J. Chem. Phys. 105, 6587–6595 (1996). [CrossRef]
  34. J. F. Power, “Pulsed mode thermal lens effect detection in near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Opt. 29, 52–63 (1990). [CrossRef] [PubMed]
  35. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992). [CrossRef]
  36. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982). [CrossRef] [PubMed]
  37. In the formulation of the TL signal, the temporal shape of the excitation pulse is assumed to be square although the actual shape was near Gaussian. Assuming a Gaussian temporal shape makes the formulation too complex, so we assume a square temporal shape for simplicity.
  38. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), p. 502.
  39. R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, “Nonlinear optical properties of thienyl and bithienyl iodonium salts as measured by the Z-scan technique,” J. Opt. A: Pure Appl. Opt. 4, 5202–5206 (2002). [CrossRef]
  40. L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002). [CrossRef]
  41. M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994). [CrossRef]
  42. J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents—Physical Properties and Methods of Purification, 4th ed. (Wiley, New York, 1986).
  43. D. R. Lide ed., CRC Handbook of Chemistry and Physics, 79th ed. (CRC Press, Boca Raton, Fla., 1998), Sect. 6, p. 177.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited