OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 648–651

Integrated atom-optical circuit with continuous-wave operation

Dominik Schneble, Masahiro Hasuo, Thomas Anker, Tilman Pfau, and Jürgen Mlynek  »View Author Affiliations


JOSA B, Vol. 20, Issue 4, pp. 648-651 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000648


View Full Text Article

Acrobat PDF (144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have produced an elementary, continuously operating integrated circuit for atoms. The circuit, which is realized by purely optical means, combines an atom source, a switchable channel guide, and a local atom detector within the geometry of a planar atomic waveguide at submicrometer distance from a metallic surface.

© 2003 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(130.0130) Integrated optics : Integrated optics
(230.7390) Optical devices : Waveguides, planar
(240.0240) Optics at surfaces : Optics at surfaces

Citation
Dominik Schneble, Masahiro Hasuo, Thomas Anker, Tilman Pfau, and Jürgen Mlynek, "Integrated atom-optical circuit with continuous-wave operation," J. Opt. Soc. Am. B 20, 648-651 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-4-648


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. G. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).
  2. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975-1978 (1999).
  3. T. Calcaro, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304-11 (2000).
  4. M. Olshanii, “Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons,” Phys. Rev. Lett. 81, 938-941 (1998).
  5. H. Monien, M. Linn, and N. Elstner, “Trapped one-dimensional Bose gas as a Luttinger liquid,” Phys. Rev. A 58, R3395-R3398 (1998).
  6. C. Henkel and M. Wilkens, “Heating of trapped atoms near thermal surfaces,” Europhys. Lett. 47, 414-420 (1999).
  7. D. Mu¨ller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194-5197 (1999).
  8. N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drindic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124-1127 (2000).
  9. R. Folman, P. Kru¨ger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749-4752 (2000).
  10. D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5438-5441 (2000).
  11. D. Mu¨ller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, Y.-J. Wang, and D. Z. Anderson, “Magnetic switch for integrated atom optics,” Phys. Rev. A 63, 041602-3 (2001).
  12. J. Reichel, W. Ha¨nsel, and T. Ha¨nsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999).
  13. W. Ha¨nsel, J. Reichel, P. Hommelhoff, and T. W. Ha¨nsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608-611 (2001).
  14. W. Ha¨nsel, P. Hommelhoff, T. W. Ha¨nsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498-501 (2001).
  15. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401-4 (2001).
  16. A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 040401-4 (2002).
  17. Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B 24, 3173-3178 (1991).
  18. P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, “Elementary Sisyphus process close to a dielectric surface,” Phys. Rev. A 54, 4292-4298 (1996).
  19. W. Power, T. Pfau, and M. Wilkens, “Loading atoms into a surface trap: simulations of an experimental scheme,” Opt. Commun. 143, 125-130 (1997).
  20. E. A. Hinds, M. G. Boshier, and I. G. Hughes, “Magnetic waveguide for trapping cold atom gases in two dimensions,” Phys. Rev. Lett. 80, 645-649 (1998).
  21. R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden van den Heuvell, “Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,” Phys. Rev. A 61, 053604-7 (2000).
  22. H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998).
  23. D. Schneble, H. Gauck, M. Hartl, T. Pfau, and J. Mlynek, “Optical atom traps at surfaces, in Bose–Einstein condensation in atomic gases,” in Proceedings of the International School of Physics “Enrico Fermi” Course CXL, M. Inguscio, S. Stringari, and C. E. Wieman, eds. (IOS Press, Amsterdam, 1999), pp. 469–490, and references therein.
  24. H. Raether, Surface Plasmons on Smooth and Rough Sur-faces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  25. D. Schneble, “Trapping and manipulation of laser-cooled metastable argon atoms at a surface,” Ph.D. dissertation (Universita¨t Konstanz, Konstanz, Germany, 2001).
  26. When it is applied globally, one can also use this principle to determine the fraction of atoms in the surface waveguide; cf. Refs. 22 and 23.
  27. Inelastic collisions between atoms in the WG (Ref. 23) for densities of >109 cm−3 did not contribute significantly.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited