OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 662–669

Green two-frequency pulsed laser: intracavity doubling of helicoidal eigenstates

Ngoc Diep Lai, Marc Brunel, and Fabien Bretenaker  »View Author Affiliations

JOSA B, Vol. 20, Issue 4, pp. 662-669 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate, both theoretically and experimentally, how to build a pulsed intracavity-doubled two-frequency laser. To this aim, we use a Jones-matrix analysis in order to choose the orientations of the cavity anisotropies, namely, two quarter-wave plates, a passive Q-switch, and a doubling crystal. In particular, we find the conditions necessary for the simultaneous oscillation of the two eigenstates, depending on whether the doubling crystal is inserted between the quarter-wave plates or not. Continuous tuning of the frequency difference is provided by rotating one quarter-wave plate or the birefringent doubling crystal. Moreover, the efficiencies of second-harmonic generation and sum-frequency generation are controlled. The experimental results, obtained with a diode-pumped Nd:YAG–Cr:YAG laser intracavity doubled by a KTP crystal, are in agreement with the model.

© 2003 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.7300) Lasers and laser optics : Visible lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing

Ngoc Diep Lai, Marc Brunel, and Fabien Bretenaker, "Green two-frequency pulsed laser: intracavity doubling of helicoidal eigenstates," J. Opt. Soc. Am. B 20, 662-669 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. R. Marshall, A. D. Hays, A. Kaz, and R. L. Burnham, “Intracavity doubled mode-locked and CW diode-pumped lasers,” IEEE J. Quantum Electron. 28, 1158-1163 (1992). [CrossRef]
  2. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “3 W ofsingle-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser,” Opt. Lett. 21, 875-877 (1996). [CrossRef] [PubMed]
  3. Y. F. Chen, T. M. Huang, C. L. Wang, and L. J. Lee, “Compact and efficient 3.2 W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37, 5727-5730 (1998). [CrossRef]
  4. T. Sasaki, T. Kojima, A. Yokotani, O. Oguri, and S. Nakai, “Single-longitudinal-mode operation and second-harmonic generation of Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1665-1667 (1991). [CrossRef] [PubMed]
  5. T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers,” Appl. Opt. 34, 4298-4301 (1995). [CrossRef] [PubMed]
  6. A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Reali, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480-1484 (1998). [CrossRef]
  7. M. Alouini, N. D. Lai, M. Brunel, M. Vallet, O. Emile, A. Le Floch, and F. Bretenaker, “Dual-frequency solid-state lasers for optical and microwave telecommunications,” Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), paper CWG3, p. 390.
  8. Y. Li, A. J. C. Vieira, S. M. Goldwasser, and P. R. Herczfeld, “Rapidly tunable millimeter-wave optical transmitter for lidar-radar,” IEEE Trans. Microwave Theory Tech. 49, 2048-2054 (2001). [CrossRef]
  9. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “The building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702-5712 (2002). [CrossRef] [PubMed]
  10. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367-369 (2001). [CrossRef]
  11. M. Alouini, F. Bretenaker, M. Brunel, D. Chauvat, O. Emile, A. Le Floch, G. Ropars, and M. Vallet, “One- and two-axis laser cavities for dual-frequency operation and microwave generation,” in Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavelength Control, L. N. Soms and V. E. Sherstobitov, eds., Proc. SPIE 4353, 145-150 (2001), and references therein. [CrossRef]
  12. L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, “Hybid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703-2710 (1996).
  13. C. H. Lee, “Picosecond optics and microwave technology,” IEEE Trans. Microwave Theory Tech. 38, 596-607 (1990). [CrossRef]
  14. V. Evtuhov and A. E. Siegman, “A ‘twisted-mode’ technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142-143 (1965). [CrossRef]
  15. A. Kastler, “Champ lumineux stationnaire a` structure hélicoi¨dale dans une cavité laser,” C.R. Seances Acad. Sci., Ser. B 271, 999-1001 (1970).
  16. R. C. Jones, “A new calculus for the treatment of opticalsystems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488-493 (1941). [CrossRef]
  17. H. De Lang, “Polarization properties of optical resonators passive and active,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1966).
  18. A. Le Floch and R. Le Naour, “Polarization effects in Zeeman lasers with x-y type anisotropies,” Phys. Rev. A 4, 290-295 (1971). [CrossRef]
  19. M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers,” Opt. Lett. 13, 805-807 (1988). [CrossRef] [PubMed]
  20. S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B 11, 436-445 (1994). [CrossRef]
  21. A. Owyoung and P. Esherick, “Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser,” Opt. Lett. 12, 999-1001 (1987). [CrossRef] [PubMed]
  22. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960 (1992). [CrossRef]
  23. A. Brignon, “Anisotropic properties of pulsed four-wave mixing in Cr4+:YAG saturable absorbers,” J. Opt. Soc. Am. B 13, 2154-2163 (1996). [CrossRef]
  24. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052-4058 (1999). [CrossRef]
  25. P. Lagoutte, Ph. Balcou, F. Bretenaker, A. Le Floch, and O. Cregut, “Double-helicoidal eigenstates in lasers,” J. Opt. Soc. Am. B 12, 132-138 (1995). [CrossRef]
  26. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  27. H. Ito, H. Naito, and H. Inaba, “Generalized study on angular dependence of induced second-order nonlinear optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992-3998 (1975). [CrossRef]
  28. D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148-1157 (1992). [CrossRef]
  29. G. E. James, E. M. Harrell II, and R. Roy, “Intermittency and chaos in intracavity doubled lasers. II,” Phys. Rev. A 41, 2778-2790 (1990). [CrossRef] [PubMed]
  30. S. Spiekermann, H. Karlsson, and F. Laurell, “Efficient frequency conversion of a passively Q-switched Nd:YAG laser at 946 nm in periodically poled KTiOPO4,” Appl. Opt. 40, 1979-1982 (2001). [CrossRef]
  31. N. Vansteenkiste, P. Vignolo, and A. Aspect, “Optical reversibility theorems for polarization: application to remote control of polarization,” J. Opt. Soc. Am. A 10, 2240-2245 (1993). [CrossRef]
  32. H. Hurwitz, Jr., and R. C. Jones, “A new calculus for the treatment of optical systems. II. Proof of three general equivalence theorems,” J. Opt. Soc. Am. 31, 493–499 (1941). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited