OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 677–684

Polarization properties of light-induced scattering in Bi12TiO20 crystals: theory and experiment for diagonal geometry

O. Filippov, K. H. Ringhofer, M. Shamonin, E. Shamonina, A. A. Kamshilin, E. Nippolainen, and B. I. Sturman  »View Author Affiliations


JOSA B, Vol. 20, Issue 4, pp. 677-684 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000677


View Full Text Article

Enhanced HTML    Acrobat PDF (458 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Illumination of ac-biased photorefractive Bi12TiO20 crystals with a coherent light beam results in the development of strong nonlinear scattering. Theoretically and experimentally we investigate the angular and polarization characteristics of the scattered light for the diagonal ([1¯1¯1]) optical configuration and different polarization states of the pump. A satisfactory understanding of the observed scattering properties is achieved for most of the cases investigated.

© 2003 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics

Citation
O. Filippov, K. H. Ringhofer, M. Shamonin, E. Shamonina, A. A. Kamshilin, E. Nippolainen, and B. I. Sturman, "Polarization properties of light-induced scattering in Bi12TiO20 crystals: theory and experiment for diagonal geometry," J. Opt. Soc. Am. B 20, 677-684 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-4-677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).
  2. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Systems (Springer-Verlag, Berlin, 1991).
  3. S. I. Stepanov, “Applications of photorefractive crystals,” Rep. Prog. Phys. 57, 39-116 (1994). [CrossRef]
  4. J. P. Huignard and A. Marrakchi, “Coherent signal amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981). [CrossRef]
  5. P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45-57 (1985). [CrossRef]
  6. S. I. Stepanov and M. P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field,” Opt. Commun. 53, 292-295 (1985). [CrossRef]
  7. C. S. K. Walsh, A. K. Powell, and T. J. Hall, “Techniques for the enhancement of space-charge fields in photorefractive materials,” J. Opt. Soc. Am. B 7, 288-303 (1990). [CrossRef]
  8. J. E. Millerd, E. M. Garmire, and M. B. Klein, “Investigation of photorefractive self-pumped phase-conjugate mirrors in the presence of loss and high modulation depth,” J. Opt. Soc. Am. B 9, 1499-1506 (1992). [CrossRef]
  9. A. V. Khomenko, A. Garcia-Weidner, and A. A. Kamshilin, “Amplification of optical signals in Bi12TiO20 crystal by photorefractive surface waves,” Opt. Lett. 21, 1014-1016 (1996). [CrossRef] [PubMed]
  10. E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Polarization properties of fanning light in fiberlike bismuth titanium oxide crystals,” Opt. Lett. 21, 1897-1899 (1996). [CrossRef] [PubMed]
  11. A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Beam fanning and double phase conjugation in a fiber-like photorefractive sample,” IEEE J. Quantum Electron. 31, 1642-1647 (1995). [CrossRef]
  12. A. Marrakchi, R. V. Johnson, and A. R. Tanguay, “Polarization properties of photorefractive diffraction in electro-optic and optically active sillenite crystals (Bragg regime),” J. Opt. Soc. Am. B 3, 321-336 (1986). [CrossRef]
  13. S. Mallick, D. Roue`de, and A. G. Apostolidis, “Efficiency and polarization characteristics of photorefractive diffraction in a Bi12SiO20 crystal,” J. Opt. Soc. Am. B 4, 1247-1259 (1987). [CrossRef]
  14. B. I. Sturman, D. J. Webb, R. Kowarschik, E. Shamonina, and K. H. Ringhofer, “Exact solution of the Bragg-diffraction problem in sillenites,” J. Opt. Soc. Am. B 11, 1813-1819 (1994). [CrossRef]
  15. J. R. Goff, “Polarization properties of transmission and diffraction in BSO crystals—a unified analysis,” J. Opt. Soc. Am. B 12, 99-116 (1995). [CrossRef]
  16. V. V. Shepelevich, S. M. Shandarov, and A. E. Mandel, “Light diffraction by holographic gratings in optically active photorefractive piezocrystals,” Ferroelectrics 110, 235-249 (1990). [CrossRef]
  17. G. Pauliat, P. Mathey, and G. Roosen, “Influence of piezoelectricity on the photorefractive effect,” J. Opt. Soc. Am. B 8, 1942-1946 (1991). [CrossRef]
  18. M. Zgonik, K. Nakagava, and P. Gu¨nter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3 crystals,” J. Opt. Soc. Am. B 12, 1416-1421 (1995). [CrossRef]
  19. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999). [CrossRef]
  20. B. I. Sturman, A. I. Chernykh, V. P. Kamenov, E. Shamonina, and K. H. Ringhofer, “Resonant vectorial wave coupling in cubic photorefractive crystals,” J. Opt. Soc. Am. B 17, 985-996 (2000). [CrossRef]
  21. V. P. Kamenov, E. Shamonina, K. H. Ringhofer, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Two-wave mixing in (111)-cut Bi12SiO20 and Bi12TiO20 crystals: characterization and comparison with the general orientation,” Phys. Rev. E 62, 2863-2870 (2000). [CrossRef]
  22. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1969).
  23. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), p. 271.
  24. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, “Space-charge waves in photorefractive crystals and their parametric excitation,” J. Opt. Soc. Am. B 10, 1919-1932 (1993). [CrossRef]
  25. For the sake of definiteness we consider only one of several equivalent diagonal configurations.
  26. S. Stepanov, S. M. Shandarov, and N. D. Khat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754-1756 (1987).
  27. E. Shamonina, V. P. Kamenov, K. H. Ringhofer, G. Cedilnik, A. Kiessling, and R. Kowarschik, “Optimum orientation of volume phase gratings in sillenite crystals: is it always [111]?” J. Opt. Soc. Am. B 15, 2552-2559 (1998). [CrossRef]
  28. G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Gunter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791-1794 (1995). [CrossRef] [PubMed]
  29. E. Shamonina, K. H. Ringhofer, B. I. Sturman, V. P. Kamenov, G. Cedilnik, M. Esselbach, A. Kiessling, R. Kowarschik, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Giant momentary readout produced by switching electric fields during two-wave mixing in sillenites,” Opt. Lett. 23, 1435-1437 (1998). [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1968).
  31. A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using a photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575-2577 (1999). [CrossRef]
  32. Ph. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154-164 (1995). [CrossRef]
  33. A. A. Kamshilin, K. Paivasaari, M. Klein, and B. Pouet, “Adaptive interferometer using self-induced electro-optic modulation,” Appl. Phys. Lett. 77, 4098-4100 (2000). [CrossRef]
  34. M. P. Georges, V. S. Scauflair, and P. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals,” Appl. Phys. B 72, 761-765 (2001). [CrossRef]
  35. M. C. Barbosa, L. Mosquera, and J. Frejlich, “Speed and diffraction efficiency in feedback-controlled running holograms for photorefractive crystal characterization,” Appl. Phys. B 72, 717-721 (2001). [CrossRef]
  36. A. A. Freschi, P. M. Garcia, and J. Frejlich, “Charge-carrier diffusion length in photorefractive crystals computed from the initial phase shift,” Appl. Phys. B 71, 2427–2429 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited