OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 695–705

Stable all-optical limiting in nonlinear periodic structures. III. Nonsolitonic pulse propagation

Winnie N. Ye, Lukasz Brzozowski, Edward H. Sargent, and Dmitry Pelinovsky  »View Author Affiliations


JOSA B, Vol. 20, Issue 4, pp. 695-705 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000695


View Full Text Article

Acrobat PDF (675 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed time-domain analysis of a promising nonlinear optical device consisting of alternating layers of nonlinear materials with oppositely signed Kerr coefficients. We study propagation of nonsolitonic (Gaussian) pulses through the device, whose transmittance characteristics point to potential uses in all-optical switches and limiters. If the optical structure has no linear built-in grating, the pulse experiences a nonsolitonic (amplitude-decaying) propagation in the structure, which exhibits limiting properties depending on the bandwidth of the pulse. We elucidate the conditions under which double imaging occurs within the dynamically formed grating under the pulse propagation. In the presence of the linear out-of-phase grating, we observe strong envelope compression and reshaping of a Gaussian pulse, resulting in stable high-amplitude, multiple-peak oscillations as it propagates through the nonlinear optical structure.

© 2003 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(200.4740) Optics in computing : Optical processing
(230.1150) Optical devices : All-optical devices
(230.1480) Optical devices : Bragg reflectors
(230.4320) Optical devices : Nonlinear optical devices

Citation
Winnie N. Ye, Lukasz Brzozowski, Edward H. Sargent, and Dmitry Pelinovsky, "Stable all-optical limiting in nonlinear periodic structures. III. Nonsolitonic pulse propagation," J. Opt. Soc. Am. B 20, 695-705 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-4-695


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. M. de Sterke and J. E. Sipe, “Gap solitons,” Prog. Opt. 33, 203-259 (1994).
  2. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996).
  3. N. G. R. Broderick, D. Taverner, and D. J. Richardson, “Nonlinear switching in fiber Bragg gratings,” Opt. Express 3, 447-453 (1998).
  4. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566-4569 (1997).
  5. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Experimental observation of nonlinear pulse compression in nonuniform Bragg gratings,” Opt. Lett. 22, 1837-1839 (1997).
  6. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427-1429 (1992).
  7. C. J. Herbert, W. S. Capinsky, and M. S. Malcuit, “Optical power limiting with nonlinear periodic structures,” Opt. Lett. 17, 1037-1039 (1992).
  8. L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron. 36, 550-555 (2000).
  9. J. He and M. Cada, “Optical bistability in semiconductor periodic structures,” IEEE J. Quantum Electron. 27, 1182-1188 (1991).
  10. D. Pelinovsky, L. Brzozowski, J. Sears, and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. I. Analysis,” J. Opt. Soc. Am. B 19, 43-53 (2002).
  11. D. Pelinovsky and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. II. Computations,” J. Opt. Soc. Am. B 19, 1873-1889 (2002).
  12. W. N. Ye, L. Brzozowski, E. H. Sargent, and D. Pelinovsky, “Nonlinear propagation of ultrashort pulses in nonlinear periodic materials with oppositely-signed Kerr coefficients,” in IEEE LEOS Annual General Meeting Proceedings (Institute of Electrical and Electronics Engineers, San Diego, 2001), pp. 441-442.
  13. E. Johnson and E. H. Sargent, “Function and sensitivity of signal processing systems using addition followed by limiting,” J. Lightwave Technol. (to be published).
  14. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160-163 (1987).
  15. D. L. Mills and S. E. Trullinger, “Gap solitons in nonlinear periodic structures,” Phys. Rev. B 36, 947-952 (1987).
  16. J. E. Sipe and H. G. Winful, “Nonlinear Schro¨dinger solitons in a periodic structure,” Opt. Lett. 13, 132-133 (1988).
  17. C. M. de Sterke and J. E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic structures,” Phys. Rev. A 38, 5149-5165 (1988).
  18. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746-1749 (1989).
  19. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37-42 (1989).
  20. R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene functionalized polymer film,” Appl. Phys. Lett. 72, 1021-1023 (1998).
  21. H. S. Loka, S. D. Benjamin, and P. W. E. Smith, “Optical characterization of GaAs for ultrafast switching devices,” IEEE J. Quantum Electron. 34, 1426-1437 (1998).
  22. L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson, “Picosecond carrier lifetime and large optical nonlinearities in InGaAsP grown by helium-plasma-assisted molecular beam epitaxy,” Opt. Lett. 22, 108-110 (1997).
  23. E. Garmire, “Resonant optical nonlinearities in semiconductors,” IEEE J. Sel. Top. Quantum Electron. 6, 1094-1110 (2000).
  24. J. D. Begin and M. Cada, “Exact analytic solutions to the non-linear wave equation for a saturable Kerr-like medium: modes of non-linear optical waveguides and couplers,” IEEE J. Quantum Electron. 30, 3006-3016 (1994).
  25. A. Underhill, C. Hill, A. Charlton, S. Oliver, and S. Kreshaw, “Third-order NLO properties of PMMA films co-dispersed with metal dithiolene oligomers,” Synth. Met. 71, 1703–1704 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited