OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 713–718

Generalization of the thermal lens model formalism to account for thermodiffusion in a single-beam Z-scan experiment: determination of the Soret coefficient

S. Alves, A. Bourdon, and A. M. Figueiredo Neto  »View Author Affiliations


JOSA B, Vol. 20, Issue 4, pp. 713-718 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000713


View Full Text Article

Acrobat PDF (162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A generalization of the thermal lens model formalism is proposed to introduce and characterize the thermodiffusion phenomenon. The theory treats the case in which local heating generates a temperature gradient in a single-phase binary sample (a colloid, for instance) that yields, through thermodiffusion, concentration gradients in an initially homogeneous sample. The treatment generalizes the concept of a thermal lens to a material lens as a result of the coupling of a concentration variation with the optical properties of the medium. This formalism permits the use of the Z-scan technique to determine the Soret coefficient of samples. Applying this theory to the results of a Z-scan experiment with an ionic ferrofluid sample gives values that agree with those obtained from forced Rayleigh scattering measurements of the same material.

© 2003 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

Citation
S. Alves, A. Bourdon, and A. M. Figueiredo Neto, "Generalization of the thermal lens model formalism to account for thermodiffusion in a single-beam Z-scan experiment: determination of the Soret coefficient," J. Opt. Soc. Am. B 20, 713-718 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-4-713


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Ch. Soret, “Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homoge`ne dont deux parties sont portées a` des températures différentes,” Arch. Sci. Phys. Nat. 2, 48-61 (1879).
  2. Ch. Soret, “Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homoge`ne dont deux parties sont portées a des températures différentes (deuxie`me note),” Arch. Sci. Phys. Nat. 4, 209-213 (1880).
  3. S. R. De Groot, L’Effet Soret, Diffusion Thermique dans les Phases Condensées (Noord-Hollandsche Uitgevers Maatschappij, Amsterdam, 1945).
  4. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).
  5. K. Wada, A. Suzuki, H. Sato, and R. Kikuchi, “Soret effect in solids,” J. Phys. Chem. Solids 46, 1195-1205 (1985).
  6. S. A. Akbar, M. Kaburagi, and H. Sato, “Soret effect in solids,” J. Phys. Chem. Solids 48, 579-586 (1987).
  7. L. Landau and E. Lifchitz, Mécanique des Fluides (Mir, Moscow, 1971).
  8. C. Vidal, G. Dewel, and P. Borckmans, Au-Dela` de l’équilibre (Hermann, Paris, 1994).
  9. K. E. Grew, in Transport Phenomena in Fluids, H. J. M. Hanley, ed. (Marcel Dekker, New York, 1969).
  10. W. Ko¨hler, “Thermodiffusion in polymer solutions as observed by forced Rayleigh scattering,” J. Chem. Phys. 98, 660-668 (1993).
  11. J. Lenglet, “Generation de second harmonique et diffusionRayleigh forcée dans les colloı¨des magnétiques,” the`se de doctorat (Université Paris 7 Denis Diderot, Paris, 1996).
  12. J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, “Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments,” Phys. Rev. E 65, 031408-1-14 (2002).
  13. O. Ecenarro, J. A. Madariaga, J. Navarro, C. M. Santamaria, J. A. Carrion, and J. M. Saviron, “Fickian and thermal diffusion coefficients from liquid thermogravitational columns,” J. Phys.: Condens. Matter 2, 2289-2296 (1990).
  14. C. A. Carter and J. M. Harris, “Comparison of models describing the thermal lens effect,” Appl. Opt. 23, 476-481 (1984).
  15. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity single-beam n2 measurements,” Opt. Lett. 14, 955-957 (1989).
  16. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
  17. R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurements by means of thermal lens effect using He-Ne laser (absorption 10−3 to 10−5 cm−1 stimulated Raman scattering E-T),” Appl. Phys. Lett. 5, 141-143 (1964).
  18. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3-8 (1965).
  19. C. Hu and J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt. 12, 72-79 (1973).
  20. J. R. Whinnery, “Laser measurement of optical-absorption in liquids,” Acc. Chem. Res. 7, 225-231 (1974).
  21. F. Cuppo, A. M. Figueiredo Neto, S. Gomez, and P. Palffy-Muhoray, “Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals,” J. Opt. Soc. Am. B 19, 1342-1348 (2002).
  22. P. Palffy-Muhoray, H. J. Yuan, L. Li, and M. A. Lee, “Measurements of third order optical nonlinearities on nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 207, 291-305 (1991).
  23. A. E. Siegman, Introduction to Lasers and Masers (McGraw-Hill, New York, 1971).
  24. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1987).
  25. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, London, 1975).
  26. H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics (Dover, London, New York, 1963).
  27. Royal Society (Great Britain) Mathematical Tables Committee, Bessel Functions (University Press, Cambridge, 1950).
  28. M. Abramowitz, Handbook of Mathematical Functions (Dover, New York, 1965).
  29. R. E. Rosensweig, in Ferrohydrodynamics (Cambridge U. Press, Cambridge, England, 1985).
  30. B. Berkovski and V. Bashtovoy, eds., Magnetic Fluids and Applications Handbook (Begell House, New York, 1994).
  31. R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media,” IEEE Trans. Magn. MAG-17, 1247-1248 (1981).
  32. L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved z-scan measurements of slow absorbers,” Appl. Phys. Lett. 65, 2121-2123 (1994).
  33. S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E 59, 3059–3063 (1999).
  34. A. Mezulis, G. Demouchy, A. Bee, D, Talbot, K. Dagan, J. C. Bacri, and A. Bourdon, “2D nanoparticle diffusion and thermodiffusion induced by an optical image in magnetic colloids,” submitted to Eur. Phys. J. E.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited