OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 725–735

Interaction of a soliton with a local defect in a fiber Bragg grating

William C. K. Mak, Boris A. Malomed, and Pak L. Chu  »View Author Affiliations

JOSA B, Vol. 20, Issue 4, pp. 725-735 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (598 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the interactions of a Bragg-grating soliton with a localized defect that is a combined perturbation of the grating and the refractive index of a fiber. A family of exact analytical solutions for solitons trapped by the deltalike defect is found. Direct simulations demonstrate that, up to the available numerical accuracy, the trapped soliton is stable at a single value of its intrinsic parameter θ. Depending on the parameter values, simulations of collisions between moving solitons and the defect show that the soliton can be captured by, pass through, or even bounce off the defect. If the defect is strong and the soliton is heavy enough, it may split into three fragments: trapped, transmitted, and reflected.

© 2003 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.7010) Lasers and laser optics : Laser trapping
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

William C. K. Mak, Boris A. Malomed, and Pak L. Chu, "Interaction of a soliton with a local defect in a fiber Bragg grating," J. Opt. Soc. Am. B 20, 725-735 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  2. T. Inui, T. Komukai T, and M. Nakazawa, “Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers,” Opt. Commun. 190, 1-4 (2001). [CrossRef]
  3. A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, and A. Yariv, “All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing,” Opt. Lett. 23, 106-108 (1998). [CrossRef]
  4. H. S. Park, S. H. Yun, I. K. Hwang, S. B. Lee, and B. Y. Kim, “All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,” IEEE Photon. Technol. Lett. 13, 460-462 (2001). [CrossRef]
  5. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fibre grating in transmission,” Electron. Lett. 32, 1610-1611 (1996). [CrossRef]
  6. K. Pran, G. B. Havsga˚rd, G. Sagvolden, Ø. Farsund, and G. Wang, “Wavelength multiplexed fibre Bragg grating system for high-strain health monitoring applications,” Meas. Sci. Technol. 13, 471-476 (2002).
  7. J. M. Senior, S. E. Moss, and S. D. Cusworth, “Multiplexing techniques for noninterferometric optical point-sensor networks: a review,” Fiber Integr. Opt. 17, 3-20 (1998). [CrossRef]
  8. Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31, 297-324 (1999). [CrossRef]
  9. J. Marangos, “Slow light in cool atoms,” Nature 397, 559-560 (1999). [CrossRef]
  10. K. T. McDonald, “Slow light,” Am. J. Phys. 68, 293-294 (2000). [CrossRef]
  11. C. M. de Sterke and J. E. Sipe, “Gap solitons,” Prog. Opt. 33, 203-260 (1994). [CrossRef]
  12. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37-42 (1989). [CrossRef]
  13. D. N. Christodoulides and R. I. Joseph, “Slow Bragg soli-tons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746-1749 (1989). [CrossRef] [PubMed]
  14. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996). [CrossRef] [PubMed]
  15. C. M. de Sterke, B. J. Eggleton, and P. A. Krug, “High-intensity pulse propagation in uniform gratings and grating superstructures,” J. Lightwave Technol. 15, 1494-1502 (1997). [CrossRef]
  16. N. M. Litchinitser, B. J. Eggleton, C. M. de Sterke, A. B. Aceves, and G. P. Agrawal, “Interaction of Bragg solitons in fiber gratings,” J. Opt. Soc. Am. B 16, 18-23 (1999). [CrossRef]
  17. J. E. Heebner, R. W. Boyd, and Q. H. Park, “Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide,” Phys. Rev. E 65, 036619 (2002). [CrossRef]
  18. C. M. de Sterke, E. N. Tsoy, and J. E. Sipe, “Light trapping in a fiber grating defect by four-wave mixing,” Opt. Lett. 27, 485-487 (2002). [CrossRef]
  19. R. H. Goodman, R. E. Slusher, and M. I. Weinstein, “Stopping light on a defect,” J. Opt. Soc. Am. B 19, 1635-1652 (2002). [CrossRef]
  20. W. Mak, B. A. Malomed, and P. L. Chu, “Interaction of a soliton with a localized gain in a fiber Bragg grating,” submitted to Phys. Rev. E.
  21. Y. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763-915 (1989). [CrossRef]
  22. M. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in media with nonlinearity saturation,” Sov. J. Quantum Electron. Radiophys. 16, 783-785 (1973) [Izv. Vyssh. Zav Radiofizika 16, 1020-1022 (1973)].
  23. B. A. Malomed and R. S. Tasgal, “Vibration modes of a gap soliton in a nonlinear optical medium,” Phys. Rev. E 49, 5787-5796 (1994). [CrossRef]
  24. I. V. Barashenkov, D. E. Pelinovsky, and E. V. Zemlyanaya, “Vibrations and oscillatory instabilities of gap solitons,” Phys. Rev. Lett. 80, 5117–5120 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited