OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 764–769

Nonperturbative transient four-wave-mixing line shapes due to excitation-induced shift and excitation-induced dephasing

J. M. Shacklette and S. T. Cundiff  »View Author Affiliations

JOSA B, Vol. 20, Issue 4, pp. 764-769 (2003)

View Full Text Article

Acrobat PDF (199 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically calculate the transient-four-wave-mixing (TFWM) response in systems that exhibit either a resonance frequency or a dephasing rate that depends on the level of excitation, which can occur in semiconductors or a dense atomic vapor. These effects change the intensity dependence of the TFWM signal, causing it to display noncubic behavior for significantly lower pulse areas and even a reduction in signal intensity for increasing pulse area. They also qualitatively change both the temporal behavior and spectrum of the TFWM signal in ways that cannot adequately be described in perturbation theory. For time-integrated TFWM, the saturation behavior is also found to depend on the delay between pulses. For comparison, the effects of local fields are also calculated as they produce similar effects. These results can help provide discrimination among the various phenomena.

© 2003 Optical Society of America

OCIS Codes
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(320.7150) Ultrafast optics : Ultrafast spectroscopy

J. M. Shacklette and S. T. Cundiff, "Nonperturbative transient four-wave-mixing line shapes due to excitation-induced shift and excitation-induced dephasing," J. Opt. Soc. Am. B 20, 764-769 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. A. Lorentz, The Theory of Electrons (Dover, New York, 1952).
  2. J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67, 972-975 (1991).
  3. P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A 56, 1598-1606 (1997).
  4. J. Guo, A. Gallagher, and J. Cooper, “Lorentz-Lorenz shift in an inhomogeneously broadened medium,” Opt. Commun. 131, 219-222 (1996).
  5. J. Guo, J. Cooper, and A. Gallagher, “Selective reflection from a dense atomic vapor,” Phys. Rev. A 53, 1130-1138 (1996).
  6. V. A. Sautenkov, H. van Kampen, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole broadened line shape in a partially excited dense atomic gas,” Phys. Rev. Lett. 77, 3327-3330 (1996).
  7. D. A. Blank, L. J. Kaufman, and G. R. Fleming, “Fifth-order two-dimensional Raman spectra of CS2 are dominated by third-order cascades,” J. Chem. Phys. 111, 3105-3114 (1999).
  8. S. T. Cundiff, J. M. Shacklette, and V. O. Lorenz, “Interaction effects in optically dense materials,” in Ultrafast Phenomena in Semiconductors V, H. Jiang, K. T. Tsen, J.-J. Song, eds., Proc. SPIE 4280, 138-148 (2001).
  9. S. T. Cundiff, “Time domain observation of the Lorentz-local field,” Laser Phys. 12, 1073-1078 (2002).
  10. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).
  11. M. Wegener, D. S. Chemla, S. Schmitt-Rink, and W. Scha¨fer, “Line shape of time-resolved four-wave mixing,” Phys. Rev. A 42, 5675-5683 (1990).
  12. H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261-1264 (1993).
  13. H. Wang, K. B. Ferrio, D. G. Steel, P. R. Berman, Y. Z. Hu, R. Binder, and S. W. Koch, “Transient four-wave-mixing line shapes: effects of excitation-induced dephasing,” Phys. Rev. A 49, R1551-R1554 (1994).
  14. K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Ploog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48, 17418-17426 (1993).
  15. A. E. Paul, I. A. Bolger, A. L. Smirl, and J. G. Pellegrino, “Time-resolved measurements of the polarization state of four-wave mixing signals from GaAs multiple quantum wells,” J. Opt. Soc. Am. B 13, 1016-1025 (1996).
  16. A. L. Smirl, W. J. Walecki, X. Y. Chen, and O. Buccafusca,“Dynamics of the amplitude, phase and polarization state of coherent emission from quantum wells,” Phys. Status Solidi B 204, 16-19 (1997).
  17. K. Victor, V. M. Axt, G. Bartels, A. Stahl, K. Bott, and P. Thomas, “Microscopic foundation of the phenomenological few-level approach to coherent semiconductor optics,” Z. Phys. B 99, 197-205 (1996).
  18. T. Yajima and Y. Taira, “Spatial optical parametric coupling of picosecond light pulses and transverse relaxation effect in resonant media,” J. Phys. Soc. Jpn. 47, 1620-1626 (1979).
  19. K. Leo, M. Wegener, J. Shah, D. S. Chemla, E. O. Go¨bel, T. C. Damen, S. Schmitt-Rink, and W. Scha¨fer, “Effects of coherent polarization interactions on time-resolved degenerate four-wave mixing,” Phys. Rev. Lett. 65, 1340-1343 (1990).
  20. Y. Z. Hu, R. Binder, S. W. Koch, S. T. Cundiff, H. Wang, and D. G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B 49, 14382-14386 (1994).
  21. J. M. Shacklette and S. T. Cundiff, “Role of excitation induced shift in the coherent optical response of semiconductors,” Phys. Rev. B 66, 045309 (2002).
  22. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).
  23. A. Leitenstorfer, A. Lohner, K. Rick, P. Leisching, T. Elsaesser, T. Kuhn, F. Rossi, W. Stolz, and K. Ploog, “Excitonic and free-carrier polarizations of bulk GaAs studied by femtosecond coherent spectroscopy,” Phys. Rev. B 49, 16372-16380 (1994).
  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University, Cambridge, UK, 1988).
  25. A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, “Theoretical study of resonant ultrashort-pulse propagation in semiconductors,” Phys. Rev. A 46, 7179-7186 (1992).
  26. A. Knorr, T. O¨streich, K. Scho¨nhammer, R. Binder, and S. W. Koch, “Asymptotic analytic solution for Rabi oscillations in a system of weakly coupled excitons,” Phys. Rev. B 49, 14024-14027 (1994).
  27. S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73, 1178-1181 (1994).
  28. M. D. Webb, S. T. Cundiff, and D. G. Steel, “Observation of time-resolved picosecond stimulated photon echoes and free polarization decay in GaAs/AlGaAs multiple quantum wells,” Phys. Rev. Lett. 66, 934-937 (1991).
  29. D.-S. Kim, J. Shah, T. C. Damen, W. Scha¨fer, F. Jahnke, S. Schmitt-Rink, and K. Ko¨hler, “Unusually slow temporal evolution of femtosecond four-wave-mixing signals in intrinsic GaAs quantum wells: direct evidence for the dominance of interaction effects,” Phys. Rev. Lett. 69, 2725-2728 (1992).
  30. S. Weiss, M.-A. Mycek, J.-Y. Bigot, S. Schmitt-Rink, and D. S. Chemla, “Collective effects in excitonic free induction decay: do semiconductors and atoms emit coherent light in different ways?,” Phys. Rev. Lett. 69, 2685-2688 (1992).
  31. M. Koch, J. Feldmann, G. von Plessen, E. O. Go¨bel, P. Thomas, and K. Ko¨hler, “Quantum beats versus polarization interference: an experimental distinction,” Phys. Rev. Lett. 69, 3631-3634 (1992).
  32. V. G. Lyssenko, J. Erland, I. Balslev, K.-H. Pantke, B. S. Razbirin, and J. M. Hvam, “Nature of nonlinear four-wave-mixing beats in semiconductors,” Phys. Rev. B 48, 5720–5723 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited