OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 770–778

Finite temperature dense matter studies on next-generation light sources

Richard W. Lee, Stephen J. Moon, Hyun-Kyung Chung, Wojciech Rozmus, Hector A. Baldis, Gianluca Gregori, Robert C. Cauble, Otto L. Landen, Justin S. Wark, Andrew Ng, Steven J. Rose, Ciaran L. Lewis, Dave Riley, Jean-Claude Gauthier, and Patrick Audebert  »View Author Affiliations


JOSA B, Vol. 20, Issue 4, pp. 770-778 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000770


View Full Text Article

Acrobat PDF (504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The construction of short-pulse tunable soft x-ray free electron laser sources based on the self-amplified spontaneous emission process will provide a major advance in capability for dense plasma-related and warm dense matter (WDM) research. The sources will provide 1013 photons in a 200-fs duration pulse that is tunable from approximately 6 to 100 nm. Here we discuss only two of the many applications made possible for WDM that has been severely hampered by the fact that laser-based methods have been unavailable because visible light will not propagate at electron densities of ne≥1022 cm−3. The next-generation light sources will remove these restrictions.

© 2003 Optical Society of America

OCIS Codes
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(300.6560) Spectroscopy : Spectroscopy, x-ray
(340.0340) X-ray optics : X-ray optics
(340.6720) X-ray optics : Synchrotron radiation
(350.5400) Other areas of optics : Plasmas

Citation
Richard W. Lee, Stephen J. Moon, Hyun-Kyung Chung, Wojciech Rozmus, Hector A. Baldis, Gianluca Gregori, Robert C. Cauble, Otto L. Landen, Justin S. Wark, Andrew Ng, Steven J. Rose, Ciaran L. Lewis, Dave Riley, Jean-Claude Gauthier, and Patrick Audebert, "Finite temperature dense matter studies on next-generation light sources," J. Opt. Soc. Am. B 20, 770-778 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-4-770


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. L. Liboff, “Criteria for physical domains in laboratory and solid-state plasmas,” J. Appl. Phys. 56, 2530-2535 (1984).
  2. F. Perrot and M. W. C. Dharma-Wardana, “Spin-polarized electron liquid at arbitrary temperatures: exchange-correlation energies, electron-distribution functions, and the static response functions,” Phys. Rev. B 62, 16536-16548 (2000).
  3. For general references to the concepts of laser-produced plasmas and plasma physics, see M. N. Rosenbluth and R. Z. Sagdeev, eds., Handbook of Plasma Physics, Vol. 3 of Physics of Laser Plasmas (Elsevier, Amsterdam, 1991).
  4. H.-J. Kunze, “The laser as a tool for plasma diagnostics,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968).
  5. J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic, New York, 1975), and references therein.
  6. C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Measurement of resonance fluorescence in a laser-produced AlXII plasma,” Phys. Rev. Lett. 63, 1471-1474 (1989).
  7. C. A. Back, R. W. Lee, and C. Chenais-Popovics, “Photopumping and fluorescence in a laser-produced plasma. I. Experimental results,” Phys. Rev. A 44, 6730-6742 (1991).
  8. J. Koch, R. Lee, J. Nilsen, J. Moreno, B. MacGowan, and L. Da Silva, “X-ray lasers as sources for resonance-fluorescence experiments,” Appl. Phys. B 58, 7-11 (1994). Note that to date in higher density plasmas only the total emitted fluorescence has been studied in photopumping experiments of ion emitters.
  9. See, for example, A. Bar-Shalom, M. Klapisch, and J. Oreg, “Electron collision excitations in complex spectra of ionized heavy atoms,” Phys. Rev. A 38, 1773-1784 (1988).
  10. M. E. Foord, S. H. Glenzer, R. S. Thoe, K. L. Wong, K. B. Fournier, J. R. Albritton, B. G. Wilson, and P. T. Springer, “Accurate determination of the charge state distribution in a well characterized highly ionized Au plasma,” J. Quant. Spectrosc. Radiat. Transfer 65, 231-241 (2000).
  11. S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, “Thomson scattering from high-Z laser-produced plasmas,” Phys. Rev. Lett. 82, 97-100 (1999).
  12. See the website http://www-ssrl.slac.stanford.edu/LCLS/for information on the LCLS facility.
  13. See the website http://www-hasylab.desy.de/facility/fel/for information on the TESLA facility and the TTF, a soft x-ray FEL facility.
  14. G. J. Kalman, Strongly Coupled Coulomb Systems (Plenum, New York, 1998) and the references therein.
  15. For information on effects at 1 Mbar for hydrogen-bearing astrophysical objects. See H. M. Van Horn, “Dense astrophysical plasmas,” Science 252, 384-389 (1991).
  16. R. Smoluchowski, “Internal structure and energy emission of Jupiter,” Nature 215, 691-695 (1967).
  17. W. B. Hubbard, “Interiors of giant planets,” Science 214, 145-149 (1981).
  18. G. Chabrier, D. Saumon, W. B. Hubbard, and J. I. Lunine, “The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn,” Astrophys. J. 391, 817-826 (1992).
  19. For Jovian planets see W. J. Nellis, M. Ross, and N. C. Holmes, “Temperature measurements of shock-compressed liquid hydrogen: implications for the interior of Jupiter,” Science 269, 1249-1252 (1995).
  20. For extrasolar giant planets see D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, and G. Chabrier, “A theory of extrasolar giant planets,” Astrophys. J. 460, 993-1018 (1996).
  21. D. Saumon, W. B. Hubbard, G. Chabrier, and H. M. Van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs,” Astrophys. J. 391, 827-831 (1992).
  22. For brown dwarfs see W. B. Hubbard, T. Guillot, J. I. Lunine, A. Burrows, D. Saumon, M. S. Marley, and R. S. Freedman, “Liquid metallic hydrogen and the structure of brown dwarfs and giant planets,” Phys. Plasmas 4, 2011-2015 (1997).
  23. For low-mass stars see G. Chabrier and I. Baraffe, “Structure and evolution of low-mass stars,” Astron. Astrophys. 327, 1039-1053 (1997).
  24. E. M. Gullickson, “Mass absorption coefficients,” in X-Ray Data Booklet LBNL/PUB-490 Rev. 2, A. C. Thompson and D. Vaughn, ed. (Lawrence Berkeley National Laboratory, Berkeley, Calif., 2001) and the website http://www-cxro.lbl.gov/optical_constants/.
  25. J. D. Huba, The NRL Plasma Formulary (Plasma Physics Division, Naval Research Laboratory, Washington, D.C., 2000) and http://wwwppd.nrl.navy.mil/nrlformulary/nrlformulary.html.
  26. G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Controlled Fusion 2, 51-61 (1975).
  27. H. Baldis, J. Dunn, M. Foord, W. Rozmus, C. Andersen, and R. Shepherd, “New regime of Thomson scattering: probing dense plasmas with X-ray lasers,” J. Phys. (Paris) 11, 469-472 (2001).
  28. J. Dunn, A. L. Osterheld, J. Nilsen, J. R. Hunter, Y. Li, A. Ya. Faenov, T. A. Pikuz, and V. N. Shlyaptsev, “Saturated output tabletop x-ray lasers,” J. Phys. (Paris) 11, 19-26 (2001).
  29. S. Sebban, H. Daido, N. Sakaya, Y. Kato, K. Murai, H. Tang, Y. Gu, G. Huang, S. Wang, A. Klisnick, P. Zeitoun, F. Koike, and H. Takenaka, “Full characterization of a high-gain saturated x-ray laser at 13.9 nm,” Phys. Rev. A 61, 043810/1-9 (2000).
  30. C. L. S. Lewis, R. Keenan, A. G. MacPhee, B. Moore, R. M. N. O’Rourke, G. J. Tallents, S. Dobosz, S. J. Pestehe, F. Strati, J. S. Wark, E. Wolfrum, G. J. Pert, S. P. McCabe, P. A. Simms, R. M. Allott, J. L. Collier, C. N. Danson, A. Djaoui, and D. Neely, “Progress with saturated soft x-ray lasers pumped by the Vulcan laser,” in Soft X-Ray Lasers and Applications III, J. J. Rocca and L. B. Da Silva, eds., Proc. SPIE 3776, 292-301 (1999).
  31. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967-2970 (1997).
  32. C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
  33. A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).
  34. L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).
  35. D. H. Kalantar, M. H. Key, L. B. Da Silva, S. G. Glendinning, J. P. Knauer, B. A. Remington, F. Weber, and S. V. Weber, “Measurement of 0.35 μm laser imprint in a thin Si foil using an x-ray laser backlighter,” Phys. Rev. Lett. 76, 3574-3577 (1996).
  36. R. Cauble, L. B. Da Silva, T. W. Barbee, Jr., P. Celliers, J. C. Moreno, and A. S. Wan, “Micron-resolution radiography of laser-accelerated and x-ray heated foils with an x-ray laser,” Phys. Rev. Lett. 74, 3816-3819 (1995).
  37. J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356-358 (2000).
  38. E. Wolfrum, A. M. Allen, I. Al’Miev, T. W. Barbee, Jr., P. D. S. Burnett, A. Djaoui, C. Iglesias, D. H. Kalantar, R. W. Lee, R. Keenan, M. H. Key, C. L. S. Lewis, A. M. Machacek, B. A. Remington, S. J. Rose, R. O’Rourke, and J. S. Wark, “Measurements of the XUV mass absorption coefficient of an overdense liquid metal,” J. Phys. B 34, L565–L570 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited