OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 1003–1015

Laser cooling of trapped ions

Jürgen Eschner, Giovanna Morigi, Ferdinand Schmidt-Kaler, and Rainer Blatt  »View Author Affiliations


JOSA B, Vol. 20, Issue 5, pp. 1003-1015 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001003


View Full Text Article

Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Trapped and laser-cooled ions are increasingly used for a variety of modern high-precision experiments, for frequency standard applications, and for quantum information processing. Therefore laser cooling of trapped ions is reviewed, the current state of the art is reported, and several new cooling techniques are outlined. The principles of ion trapping and the basic concepts of laser cooling for trapped atoms are introduced. The underlying physical mechanisms are presented, and basic experiments are briefly sketched. Particular attention is paid to recent progress by elucidating several milestone experiments. In addition, a number of special cooling techniques pertaining to trapped ions are reviewed; open questions and future research lines are indicated.

© 2003 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(270.0270) Quantum optics : Quantum optics
(300.6520) Spectroscopy : Spectroscopy, trapped ion

Citation
Jürgen Eschner, Giovanna Morigi, Ferdinand Schmidt-Kaler, and Rainer Blatt, "Laser cooling of trapped ions," J. Opt. Soc. Am. B 20, 1003-1015 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-5-1003


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantification spatiale des atomes,” J. Phys. 11, 255–265 (1950).
  2. Ya. B. Zel’dovich, “Cooling with the aid of high-frequency energy,” JETP Lett. 19, 74–75 (1974).
  3. T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
  4. D. Wineland and H. Dehmelt, “Proposed 1014δν/ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator III (side band cooling),” Bull. Am. Phys. Soc. 20, 637 (1975).
  5. W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, “Optical-sideband cooling of visible atom cloud confined in parabolic well,” Phys. Rev. Lett. 41, 233–236 (1978).
  6. D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978).
  7. D. J. Wineland and W. M. Itano, “Laser cooling of atoms,” Phys. Rev. A 20, 1521–1540 (1979).
  8. W. M. Itano and D. J. Wineland, “Laser cooling of ions stored in harmonic and Penning traps,” Phys. Rev. A 25, 35–54 (1982).
  9. W. Neuhauser, M. Hohenstatt, P. E. Toschek, and H. Dehmelt, “Localized visible Ba+ mono-ion oscillator,” Phys. Rev. A 22, 1137–1140 (1980).
  10. D. J. Wineland, W. M. Itano, and R. S. van Dyck, “High resolution spectroscopy of stored ions,” Adv. At. Mol. Phys. 19, 135–186 (1983).
  11. W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: observation of quantum jumps,” Phys. Rev. Lett. 56, 2797–2799 (1986).
  12. Th. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57, 1696–1698 (1986).
  13. J. C. Bergquist, R. Hulet, W. M. Itano, and D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1699–1702 (1986).
  14. S. Stenholm, “Semiclassical theory of laser cooling,” Rev. Mod. Phys. 58, 699–739 (1986), and references therein.
  15. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
  16. Special Issue of J. Opt. Soc. Am. B 6, (1989).
  17. J. I. Cirac, R. Blatt, P. Zoller, and W. D. Phillips, “Laser cooling of trapped ions in a standing wave,” Phys. Rev. A 46, 2668–2681 (1992).
  18. J. I. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, “Dark squeezed states of the motion of a trapped ion,” Phys. Rev. Lett. 70, 556–559 (1993).
  19. J. I. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, “Preparation of Fock states by observation of quantum jumps in an ion trap,” Phys. Rev. Lett. 70, 762–765 (1993).
  20. C. A. Blockley, D. F. Walls, and H. Risken, “Quantum collapses and revivals in a quantized trap,” Europhys. Lett. 17, 509–514 (1992).
  21. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).
  22. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, “Quantum Rabi oscillation: a direct test of field quantization in a cavity,” Phys. Rev. Lett. 76, 1800–1803 (1996).
  23. J. I. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, “Nonclassical states of motion in ion traps,” Adv. Atom., Mol., Opt. Phys. 37, 237–296 (1996).
  24. J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995).
  25. C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, and D. J. Wineland, “Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy,” Phys. Rev. Lett. 75, 4011–4014 (1995).
  26. Ch. Roos, Th. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett. 83, 4713–4716 (1999).
  27. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631–3634 (1998).
  28. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
  29. B. E. King, C. S. Wood, C. J. Myatt, Q. A. Turchette, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Cooling the collective motion of trapped ions to initialize a quantum register,” Phys. Rev. Lett. 81, 1525–1528 (1998).
  30. H. Rohde, S. T. Gulde, C. F. Roos, P. A. Barton, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Sympathetic ground state cooling and coherent manipulation with two-ion-crystals,” J. Opt. B 3, S34–S41 (2001).
  31. G. Morigi, J. Eschner, and C. H. Keitel, “Ground state laser cooling using electromagnetically induced transparency,” Phys. Rev. Lett. 85, 4458–4461 (2000).
  32. C. F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547–5550 (2000).
  33. P. K. Gosh, Ion Traps (Clarendon, Oxford, UK, 1995).
  34. P. Kienle, “Sunshine by cooling,” Naturwissenschaften 88, 313–321 (2001), and references therein.
  35. J. Prestage, G. J. Dick, and L. Maleki, “New ion trap for frequency standard applications,” J. Appl. Phys. 66, 1013–1017 (1989).
  36. G. R. Janik and L. Maleki, “Simple analytic potentials for linear ion traps,” J. Appl. Phys. 67, 6050–6055 (1990).
  37. M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Ionic crystals in a linear Paul trap,” Phys. Rev. A 45, 6493–6501 (1992).
  38. M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Linear trap for high accuracy spectroscopy of stored ions,” J. Mod. Opt. 39, 233–242 (1992).
  39. A. Steane, “The ion trap quantum information processor,” Appl. Phys. B 64, 623–642 (1997).
  40. D. V. F. James, “Quantum dynamics of cold trapped ions, with application to quantum computation,” Appl. Phys. B 66, 181–190 (1998).
  41. In the absence of applied fields the trapped ion may still couple to the environment: Heating and decoherence of quantum states of the motion has been observed, 42 the origin of which is partly still unclear. Apparently this effect is critically determined by the trap characteristics, and the rate can be much slower than the rate of laser cooling.43 Furthermore, the charge of the ion couples to blackbody radiation. This process is also negligible on the time scales considered here. In the discussion, we ignore these effects.
  42. Q. A. Turchette, D. Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland, “Heating of trapped ions from the quantum ground state,” Phys. Rev. A 61, 063418 (2000).
  43. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
  44. S. Stenholm, “Redistribution of molecular velocities by optical processes,” Appl. Phys. 15, 287–296 (1978).
  45. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions (Wiley, New York, 1992).
  46. When the natural linewidth is comparable with or smaller than the laser linewidth, the rate Γ has to be replaced by the spectroscopic linewidth obtained experimentally.
  47. D. J. Wineland, J. Dalibard, and C. Cohen-Tannoudji, “Sisyphus cooling of a bound atom,” J. Opt. Soc. Am. B 9, 32–42 (1992).
  48. J. I. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, “Laser cooling of trapped ions with polarization gradients,” Phys. Rev. A 48, 1434–1445 (1993).
  49. D. J. Heinzen and D. J. Wineland, “Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions,” Phys. Rev. A 42, 2977–2994 (1990).
  50. I. Marzoli, J. I. Cirac, R. Blatt, and P. Zoller, “Laser cooling of trapped three-level ions: designing two-level systems for sideband cooling,” Phys. Rev. A 49, 2771–2779 (1994).
  51. G. Morigi, J. I. Cirac, M. Lewenstein, and P. Zoller, “Ground-state laser cooling beyond the Lamb–Dicke limit,” Europhys. Lett. 39, 13–18 (1997).
  52. L. Santos and M. Lewenstein, “Dynamical cooling of trapped gases: one-atom problem,” Phys. Rev. A 59, 613–619 (1999).
  53. E. Peik, J. Abel, Th. Becker, J. von Zanthier, and H. Walther, “Sideband cooling of ions in radio-frequency traps,” Phys. Rev. A 60, 439–449 (1999).
  54. In experiments the distance among the ions is usually of several wavelengths, and the only relevant interaction is the Coulomb repulsion. For distances of the order of the wavelength, the dipole–dipole interaction must be taken into account. Its effect in connection with laser cooling has been investigated in A. W. Vogt, J. I. Cirac, and P. Zoller, “Collective laser cooling of two trapped ions,” Phys. Rev. A 53, 950–968 (1995).
  55. I. Waki, S. Kassner, G. Birkl, and H. Walther, “Observation of ordered structures of laser-cooled ions in a quadrupole storage ring,” Phys. Rev. Lett. 68, 2007–2010 (1992).
  56. G. Birkl, S. Kassner, and H. Walther, “Multiple-shell struc-tures of laser-cooled 24Mg+ ions in a quadrupole storage ring,” Nature 357, 310–313 (1992).
  57. J. Javanainen, “Light-pressure cooling of a crystal,” Phys. Rev. Lett. 56, 1798–1801 (1986).
  58. J. Javanainen, “Laser cooling of trapped-ion clusters,” J. Opt. Soc. Am. B 5, 73–81 (1988).
  59. G. Morigi, J. Eschner, J. I. Cirac, and P. Zoller, “Laser cooling of two trapped ions: sideband cooling beyond the Lamb–Dicke limit,” Phys. Rev. A 59, 3797–3808 (1999).
  60. G. Morigi and J. Eschner, “Doppler cooling of a Coulomb crystal,” Phys. Rev. A 64, 063407 (2001).
  61. D. Kielpinski, B. E. King, C. J. Myatt, C. A. Sackett, Q. A. Turchette, W. M. Itano, C. Monroe, and D. J. Wineland, “Sympathetic cooling of trapped ions for quantum logic,” Phys. Rev. A 61, 032310 (2000).
  62. G. Morigi and H. Walther, “Two-species Coulomb chains for quantum information,” Eur. Phys. J. D 13, 261–269 (2001).
  63. S. L. Gilbert, J. J. Bollinger, and D. J. Wineland, “Shell-structure phase of magnetically confined strong coupled plasmas,” Phys. Rev. Lett. 60, 2022–2025 (1988)
  64. J. N. Tan, J. J. Bollinger, B. Jelenkovic, and D. J. Wineland, “Long-range order in laser-cooled, atomic-ion Wigner crystals observed by Bragg scattering,” Phys. Rev. Lett. 75, 4198–4201 (1995).
  65. A discussion of crystallization in these mesoscopic structures is beyond the scope of this work. The interested reader can find a review in D. H. Dubin and T. M. O’Neil, “Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium state),” Rev. Mod. Phys. 71, 87–172 (1999).
  66. F. Diedrich, E. Peik, J. M. Chen, W. Quint, and H. Walther, “Observation of a phase transition of stored laser-cooled ions,” Phys. Rev. Lett. 59, 2931–2934 (1987).
  67. D. J. Wineland, J. C. Bergquist, W. M. Itano, J. J. Bollinger, and C. H. Manney, “Atomic-ion Coulomb clusters in an ion trap,” Phys. Rev. Lett. 59, 2935–2938 (1987).
  68. R. Blümel, J. M. Chen, E. Peik, W. Quint, W. Schleich, Y. R. Shen, and H. Walther, “Phase transition of stored laser-cooled ions,” Nature 334, 309–313 (1988).
  69. D. S. Hall and G. Gabrielse, “Electron cooling of protons in a nested Penning trap,” Phys. Rev. Lett. 77, 1962–1965 (1996).
  70. W. Alt, M. Block, P. Seibert, and G. Werth, “Spatial separation of atomic states in a laser-cooled ion crystal,” Phys. Rev. A 58, R23–R25 (1998).
  71. P. Bowe, L. Hornekær, C. Brodersen, M. Drewsen, J. S. Hangst, and J. P. Schiffer, “Sympathetic crystallization of trapped ions,” Phys. Rev. Lett. 82, 2071–2074 (1999).
  72. H. C. Nägerl, D. Leibfried, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Coherent excitation of normal modes in a string of Ca+ ions,” Opt. Express 3, 89–96 (1998).
  73. C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, and D. J. Wineland, “Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy,” Phys. Rev. Lett. 75, 4011–4014 (1995).
  74. G. Morigi, H. Baldauf, W. Lange, and H. Walther, “Raman sideband cooling in the presence of multiple decay channels,” Opt. Commun. 187, 171–177 (2001).
  75. M. Lindberg and J. Javanainen, “Temperature of laser-cooled trapped three-level ion,” J. Opt. Soc. Am. B 3, 1008–1017 (1986).
  76. D. Reiß, A. Lindner, and R. Blatt, “Cooling of trapped multilevel ions: a numerical analysis,” Phys. Rev. A 54, 5133–5140 (1996).
  77. While we give the original explanation here, a more recent study shows that EIT cooling works without restrictions on the intensities see the two lasers, as long as the Lamb–Dicke limit applies; see G. Morigi, “Cooling atomic motion with quantum interference,” Phys. Rev. A (to be published); preprint available at http://arXiv.org/abs/quant-ph/0211043.
  78. E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics XXXV, pp. 257–354, E. Wolf, ed. (North Holland, Amsterdam, 1996).
  79. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997), and references therein.
  80. F. Schmidt-Kaler, J. Eschner, G. Morigi, C. F. Roos, D. Leibfried, A. Mundt, and R. Blatt, “Laser cooling with electromagnetically induced transparency: application to trapped samples of ions or neutral atoms,” Appl. Phys. B 73, 807–814 (2001).
  81. J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045 (1989).
  82. J. Dalibard and C. Cohen-Tannoudji, “Dressed-atom approach to atomic motion in laser light: the dipole force revisited,” J. Opt. Soc. Am. B 2, 1707–1720 (1985).
  83. S. M. Yoo and J. Javanainen, “Polarization gradient cooling of a trapped ion,” Phys. Rev. A 48, R30–R33 (1993).
  84. G. Birkl, J. A. Yeazell, R. Rückerl, and H. Walther, “Polarization gradient cooling of trapped ions,” Europhys. Lett. 27, 197–202 (1994).
  85. H. Katori, S. Schlipf, and H. Walther, “Anomalous dynamics of a single ion in an optical lattice,” Phys. Rev. Lett. 79, 2221–2224 (1997).
  86. S. Schlipf, H. Katori, L. Perotti, and H. Walther, “Diffusion of a single ion in a one-dimensional optical lattice,” Opt. Express 3, 97–103 (1998).
  87. J. Eschner, B. Appasamy, and P. E. Toschek, “Stochastic cooling of a trapped ion by null detection of its fluorescence,” Phys. Rev. Lett. 74, 2435–2438 (1995).
  88. B. Appasamy, Y. Stalgies, and P. E. Toschek, “Measurement-induced vibrational dynamics of a trapped ion,” Phys. Rev. Lett. 80, 2805–2808 (1998).
  89. T. Binnewies, U. Sterr, J. Helmcke, and F. Riehle, “Cooling by Maxwell’s demon: preparation of single-velocity atoms for matter-wave interferometry,” Phys. Rev. A 62, 011601 (2000).
  90. V. I. Balykin and V. S. Letokhov, “Informational cooling of neutral atoms,” Phys. Rev. A 64, 063410 (2001).
  91. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
  92. R. Dum, P. Marte, T. Pellizzari, and P. Zoller, “Laser cooling to a single quantum state in a trap,” Phys. Rev. Lett. 73, 2829–2832 (1994).
  93. Ch. Raab, J. Eschner, J. Bolle, H. Oberst, F. Schmidt-Kaler, and R. Blatt, “Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion,” Phys. Rev. Lett. 85, 538–541 (2000).
  94. R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
  95. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
  96. J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
  97. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited