OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 1075–1082

Thermodynamics of radiation-balanced lasing

Carl E. Mungan  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 1075-1082 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Athermal lasers dispose of their waste heat in the form of spontaneous fluorescence (i.e., by laser cooling) to avoid warming the medium. The thermodynamics of this process is discussed both qualitatively and quantitatively from the point of view of the first and second laws. The steady-state optical dynamics of an ytterbium-doped KGd(WO4)2 fiber is analyzed as a model radiation-balanced solid-state laser. A Carnot efficiency for all-optical amplification is derived in terms of the energy and entropy transported by the pump, fluorescence, and laser beams. This efficiency is compared with the performance of the model system.

© 2003 Optical Society of America

OCIS Codes
(000.6850) General : Thermodynamics
(140.3320) Lasers and laser optics : Laser cooling
(140.6810) Lasers and laser optics : Thermal effects

Carl E. Mungan, "Thermodynamics of radiation-balanced lasing," J. Opt. Soc. Am. B 20, 1075-1082 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995). [CrossRef]
  2. J. Fernández, A. Mendioriz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000). [CrossRef]
  3. A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001). [CrossRef]
  4. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000). [CrossRef]
  5. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001). [CrossRef]
  6. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000). [CrossRef] [PubMed]
  7. C. Zander and K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” in Advances in Photochemistry, D. C. Neckers, D. H. Volman, and G. von Bünau, eds. (Wiley, New York, 1995), Vol. 20, pp. 59–78.
  8. J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996). [CrossRef] [PubMed]
  9. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997). [CrossRef]
  10. E. Finkeissen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999). [CrossRef]
  11. C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, San Diego, Calif., 1999), Vol. 40, pp. 161–228.
  12. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999). [CrossRef]
  13. M. A. Weinstein, “Thermodynamic limitation on the conversion of heat into light,” J. Opt. Soc. Am. 50, 597–602 (1960). [CrossRef]
  14. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997). [CrossRef]
  15. G. Laufer, “Work and heat in the light of (thermal and laser) light,” Am. J. Phys. 51, 42–43 (1983). [CrossRef]
  16. W. H. Christiansen and A. Hertzberg, “Gasdynamic lasers and photon machines,” Proc. IEEE 61, 1060–1072 (1973). [CrossRef]
  17. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).
  18. O. Kafri and R. D. Levine, “Thermodynamics of adiabatic laser processes: optical heaters and refrigerators,” Opt. Commun. 12, 118–122 (1974). [CrossRef]
  19. P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51, R1–R20 (1980). [CrossRef]
  20. Th. Graf, J. E. Balmer, and H. P. Weber, “Entropy balance of optically pumped cw lasers,” Opt. Commun. 148, 256–260 (1998). [CrossRef]
  21. C. E. Mungan, S. R. Bowman, and T. R. Gosnell, “Solid-state laser cooling of ytterbium-doped tungstate crystals,” in Lasers 2000, V. J. Corcoran and T. A. Corcoran, eds. (STS, McLean, Va., 2001), pp. 819–826.
  22. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. P. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993). [CrossRef]
  23. An upper limit on the pump absorption is NσAPl=34%, where l=1 mm.
  24. Each pump source need not be a separate laser: The unabsorbed pump radiation can be recycled from one volume element to another.
  25. The pump lasers are assumed to have a bandwidth of ΔλP=4 nm. This value is typical for commercially available 100-W cw solid-state lasers at ~1-μm wavelength.
  26. In S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002), radiation-balanced lasing is calculated to be stable against perturbations in the intensities and wavelengths of the optical pump and amplified laser beams. The operating temperature of the tungstate crystal will change to reestablish balance. In addition, compared with the values used in the present paper, a slightly higher value of the radiative quantum efficiency (ηF=0.990) and a lower value of the excited-state lifetime (τ=334 μs) are measured for an Yb:KGW sample that is thin enough to avoid fluorescence reabsorption. [CrossRef]
  27. R. Kosloff and E. Geva, “Quantum refrigerators in quest of the absolute zero,” J. Appl. Phys. 87, 8093–8097 (2000). [CrossRef]
  28. B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998). [CrossRef]
  29. Yu. T. Mazurenko, “A thermodynamic treatment of the process of photoluminescence,” Opt. Spectrosc. (USSR) 18, 24–26 (1965).
  30. Yu. P. Chukova, “The region of thermodynamic admissibility of light efficiencies larger than unity,” Sov. Phys. JETP 41, 613–616 (1976).
  31. P. T. Landsberg and D. A. Evans, “Thermodynamic limits for some light-producing devices,” Phys. Rev. 166, 242–246 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited