OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 1091–1097

Back and forth between Rydberg atoms and ultracold plasmas

T. F. Gallagher, P. Pillet, M. P. Robinson, B. Laburthe-Tolra, and Michael W. Noel  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 1091-1097 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By photoionizing cold, trapped atoms it is possible to produce ultracold plasmas with temperatures in the vicinity of 1 K, roughly 4 orders of magnitude colder than conventional cold plasmas. After the first photoelectrons leave, the resulting positive charge traps the remaining electrons in the plasma. Monitoring the dynamics of the expansion of these plasmas shows explicitly the flow of energy from electrons to the ionic motion, which is manifested as the expansion of the plasma. The electron energy can either be their initial energy from photoionization or can come from the energy redistribution inherent in recombination and superelastic scattering from recombined Rydberg atoms. If the cold atoms are excited to Rydberg states instead of being photoionized, the resulting cold Rydberg gas quickly evolves into an ultracold plasma. After a few percent of the atoms are ionized by collisions or blackbody radiation, electrons are trapped by the resulting positive charge, and they quickly lead to ionization of the Rydberg atoms, forming a plasma. While the source of this energy is not clear, a likely candidate is superelastic scattering, also thought to be important for the expansion of deliberately made plasmas.

© 2003 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(020.5780) Atomic and molecular physics : Rydberg states
(020.7010) Atomic and molecular physics : Laser trapping

T. F. Gallagher, P. Pillet, M. P. Robinson, B. Laburthe-Tolra, and Michael W. Noel, "Back and forth between Rydberg atoms and ultracold plasmas," J. Opt. Soc. Am. B 20, 1091-1097 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics (Wiley, New York, 1971).
  2. X. P. Huang, J. J. Bollinger, T. B. Mitchell, and W. M. Itano, “Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields,” Phys. Rev. Lett. 80, 73–76 (1998). [CrossRef]
  3. T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, “Creation of an ultracold neutral plasma,” Phys. Rev. Lett. 83, 4776–4779 (1999). [CrossRef]
  4. S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, “Plasma oscillations and expansion of an ultracold neutral plasma,” Phys. Rev. Lett. 85, 318–321 (2000). [CrossRef] [PubMed]
  5. T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson, and S. L. Rolston, “Formation of Rydberg atoms in an expanding ultracold neutral plasma,” Phys. Rev. Lett. 86, 3759–3762 (2001). [CrossRef] [PubMed]
  6. S. Mazevet, L. A. Collins, and J. D. Kress, “Evolution of ultracold neutral plasmas,” Phys. Rev. Lett. 88, 055001 (2002). [CrossRef] [PubMed]
  7. F. Robicheaux and J. D. Hanson, “Simulation of the expansion of an ultracold plasma,” Phys. Rev. Lett. 88, 055002 (2002). [CrossRef]
  8. M. P. Robinson, B. Laburthe-Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000). [CrossRef] [PubMed]
  9. G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gas of very excited atoms,” J. Phys. B 15, L49–L55 (1982). [CrossRef]
  10. R. R. Jones, Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (personal communication, 2001).
  11. M. P. Robinson, “Interactions in a frozen Rydberg gas,” Ph.D. thesis (University of Virginia, Charlottesville, Virginia, 2002).
  12. B. Laburthe-Tolra, “Atomes, molécules et plasmas ultra-froids: transition d’un gaz de Rydberg gelé vers un plasma ultra-froid.—Contro⁁le de collisions de photo association dans des schémas de resonance de Feshbach et de transition Raman stimulée,” Ph.D. thesis (Universite Paris-Sud, Paris, France, 2001).
  13. T. F. Gallagher, Rydberg Atoms (Cambridge University, Cambridge, UK, 1994).
  14. S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High angular momentum states in cold Rydberg gases,” Phys. Rev. Lett. 86, 3993–3996 (2001). [CrossRef] [PubMed]
  15. A. Estrin, D. Tong, J. R. Ensher, C. H. Cheng, E. E. Eyler, and P. L. Gould, “Plasma formation followed by recombination in a gas of ultracold Rydberg atoms,” Bull. Am. Phys. Soc. 46, 46–47 (2001).
  16. W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W. Ducas, “Temperature dependence of blackbody-radiation-induced transfer among highly excited states of sodium,” Phys. Rev. A 25, 380–384 (1982). [CrossRef]
  17. R. E. Olson, “Ionization cross sections for Rydberg atom–Rydberg atom collisions,” Phys. Rev. Lett. 43, 126–129 (1979). [CrossRef]
  18. I. Mourachko, D. Comparat, F. deTomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998). [CrossRef]
  19. W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett. 80, 249–253 (1998). [CrossRef]
  20. T. C. Killian, Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (personal communication, 2001).
  21. M. D. Lukin, M. Fleischauer, R. Cote, L. M. Duan, D. Jaksch, J. J. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited