OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 1098–1130

Mechanical effects of light in optical resonators

Peter Domokos and Helmut Ritsch  »View Author Affiliations


JOSA B, Vol. 20, Issue 5, pp. 1098-1130 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001098


View Full Text Article

Enhanced HTML    Acrobat PDF (944 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review the modifications and implications of the effect of light forces on atoms when the field is enclosed in an optical resonator of high finesse. The systems considered range from a single atom strongly coupled to a single mode of a high-Q microcavity to a large ensemble of atoms in a highly degenerate quasi-confocal resonator. We set up general models that allow us to obtain analytic expressions for the optical potential, friction, and diffusion. In the bad-cavity limit the modified cooling properties can be attributed to the spectral modifications of light absorption and spontaneous emission in a form of generalized and enhanced Doppler cooling. For the strong coupling regime in a good cavity, we identify the dynamical coupling between the light field intensity and the atomic motion as the central mechanism underlying the cavity-induced cooling. The dynamical cavity cooling, which does not rely on spontaneous emission, can be enhanced by multimode cavity geometries because of the effect of coherent photon redistribution between different modes. The model is then generalized to include several distinct frequencies to account for more general trap geometries. Finally we show that the field-induced buildup of correlations between the motion of different particles plays a central role in the scaling behavior of the system. Depending on the geometry and parameters, its effect ranges from strong destructive interference, slowing down the cooling process, to self-organized crystallization, implying atomic self-trapping and faster cooling to lower temperatures by cooperative coherent scattering.

© 2003 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.4780) Lasers and laser optics : Optical resonators
(140.7010) Lasers and laser optics : Laser trapping

Citation
Peter Domokos and Helmut Ritsch, "Mechanical effects of light in optical resonators," J. Opt. Soc. Am. B 20, 1098-1130 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-5-1098


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chu, “Nobel lecture: the manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998). [CrossRef]
  2. C. Cohen-Tannoudji, “Nobel lecture: manipulating atoms with photons,” Rev. Mod. Phys. 70, 707–719 (1998). [CrossRef]
  3. W. D. Phillips, “Nobel lecture: laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998). [CrossRef]
  4. S. Haroche, “Cavity quantum electrodynamics,” in Fundamental Systems in Quantum Optics, Les Houches Summer School, Proceedings, Vol. 53, J. Dalibard, J.-M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1992), pp. 767–940.
  5. P. Berman, ed., Cavity Quantum Electrodynamics (Academic, San Diego, Calif., 1994.).
  6. R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992). [CrossRef] [PubMed]
  7. H. Mabuchi, M. S. Chapman, T. Q. A. Turchette, and H. J. Kimble, “Real-time detection of individual atoms falling through a high-finesse optical cavity,” Opt. Lett. 21, 1393–1395 (1996). [CrossRef] [PubMed]
  8. C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, “Real-time cavity QED with single atoms,” Phys. Rev. Lett. 80, 4157–4160 (1998). [CrossRef]
  9. P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe, “Dynamics of single-atom motion observed in a high-finesse cavity,” Phys. Rev. Lett. 82, 3791–3794 (1999). [CrossRef]
  10. J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999). [CrossRef]
  11. P. Horak, G. Hechenblaikner, K. M. Gheri, H. Stecher, and H. Ritsch, “Cavity-induced atom cooling in the strong coupling regime,” Phys. Rev. Lett. 79, 4974–4977 (1997). [CrossRef]
  12. C. Cohen-Tannoudji, “Atomic motion in laser light,” in Fundamental Systems in Quantum Optics, Les Houches Summer School Proceedings, Vol. 53, J. Dalibard, J.-M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1992), pp. 1–164.
  13. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).
  14. J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045 (1989). [CrossRef]
  15. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988). [CrossRef] [PubMed]
  16. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  17. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981). [CrossRef]
  18. D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. A 59, 2623–2626 (1987).
  19. T. W. Mossberg, M. Lewenstein, and D. J. Gauthier, “Trapping and cooling of atoms in a vacuum perturbed in a frequency-dependent manner,” Phys. Rev. Lett. 67, 1723–1726 (1991). [CrossRef] [PubMed]
  20. M. Lewenstein and L. Roso, “Cooling of atoms in colored vacua,” Phys. Rev. A 47, 3385–3389 (1993). [CrossRef] [PubMed]
  21. J. I. Cirac, M. Lewenstein, and P. Zoller, “Laser cooling a trapped atom in a cavity: bad-cavity limit,” Phys. Rev. A 51, 1650–1654 (1995). [CrossRef] [PubMed]
  22. V. Vuletić and S. Chu, “Laser cooling of atoms, ions, or molecules by coherent scattering,” Phys. Rev. Lett. 84, 3787–3790 (2000). [CrossRef] [PubMed]
  23. V. Vuletić, H. W. Chan, and A. T. Black, “Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering,” Phys. Rev. A 64, 033405 (2001). [CrossRef]
  24. G. Hechenblaikner, M. Gangl, P. Horak, and H. Ritsch, “Cooling an atom in a weakly driven high-Q cavity,” Phys. Rev. A 58, 3030–3042 (1998). [CrossRef]
  25. P. Münstermann, T. Fischer, P. W. H. Pinkse, and G. Rempe, “Single slow atoms from an atomic fountain observed in a high-finesse optical cavity,” Opt. Commun. 159, 63–67 (1999). [CrossRef]
  26. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000). [CrossRef] [PubMed]
  27. C. J. Hood, T. W. Lynn, A. C. Doherty, and A. S. P. H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000). [CrossRef] [PubMed]
  28. P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe, “Observation of cavity-mediated long-range light forces between strongly coupled atoms,” Phys. Rev. Lett. 84, 4068–4071 (2000). [CrossRef] [PubMed]
  29. J. P. Gordon and A. Ashkin, “Motion of atoms in a radiation trap,” Phys. Rev. A 21, 1606–1617 (1980). [CrossRef]
  30. J. Dalibard and C. Cohen-Tannoudji, “Atomic motion in laser light: connection between semiclassical and quantum descriptions,” J. Phys. B 18, 1661–1683 (1985). [CrossRef]
  31. A. C. Doherty, T. W. Lynn, C. J. Hood, and H. J. Kimble, “Trapping of single atoms with single photons in cavity QED,” Phys. Rev. A 63, 013401 (2000). [CrossRef]
  32. I. Protsenko, P. Domokos, V. Lefèvre, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1681 (1999). [CrossRef]
  33. J. Dalibard and C. Cohen-Tannoudji, “Dressed-atom approach to atomic motion in laser light: the dipole force revisited,” J. Opt. Soc. Am. B 2, 1707–1720 (1985). [CrossRef]
  34. T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Collective light forces on atoms in a high-finesse cavity,” New J. Phys. 3, 11.1–11.20 (2001).
  35. P. Domokos, T. Salzburger, and H. Ritsch, “Dissipative motion of an atom with transverse coherent driving in a cavity with many degenerate modes,” Phys. Rev. A 66, 043406 (2002). [CrossRef]
  36. S. Pirandola, D. Vitali, and P. Tombesi, “Trapping and cooling single atoms with far-off-resonance intracavity doughnut modes,” Phys. Rev. A 67, 023404 (2003). [CrossRef]
  37. P. Domokos, M. Gangl, and H. Ritsch, “Single-atom detection in high-Q multimode cavities,” Opt. Commun. 185, 115–123 (2000). [CrossRef]
  38. A. Hemmerich, “Quantum entanglement in dilute optical lattices,” Phys. Rev. A 60, 943–946 (1999). [CrossRef]
  39. M. Gangl and H. Ritsch, “Cold atoms in a high-Q ring cavity,” Phys. Rev. A 61, 043405 (2000). [CrossRef]
  40. P. Horak and H. Ritsch, “Scaling properties of cavity-enhanced atom cooling,” Phys. Rev. A 64, 033422 (2001). [CrossRef]
  41. S. J. van Enk, J. McKeever, H. J. Kimble, and J. Ye, “Cooling of a single atom in an optical trap inside a resonator,” Phys. Rev. A 64, 013407 (2001). [CrossRef]
  42. Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B 24, 3173–3178 (1991). [CrossRef]
  43. Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997). [CrossRef]
  44. H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, “Quasi-2D gas of laser cooled atoms in a planar matter waveguide,” Phys. Rev. Lett. 81, 5298–5301 (1998). [CrossRef]
  45. F. Treussart, J. Hare, L. Collot, V. Lefèvre, D. S. Weiss, V. S. Sandoghdar, J. M. Raimond, and S. Haroche, “Quantized atom-field force at the surface of a microsphere,” Opt. Lett. 19, 1651–1653 (1994). [CrossRef] [PubMed]
  46. H. Mabuchi and H. J. Kimble, “Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator,” Opt. Lett. 19, 749–752 (1994). [CrossRef] [PubMed]
  47. A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996). [CrossRef] [PubMed]
  48. K. Ellinger, J. Cooper, and P. Zoller, “Light-pressure force in N-atom systems,” Phys. Rev. A 49, 3909–3933 (1994). [CrossRef] [PubMed]
  49. M. Gangl and H. Ritsch, “Collective dynamical cooling of neutral particles in a high-Q optical cavity,” Phys. Rev. A 61, 011402 (2000). [CrossRef]
  50. P. Domokos and H. Ritsch, “Collective cooling and self-organization of atoms in a cavity,” Phys. Rev. Lett. 89, 253003 (2002). [CrossRef] [PubMed]
  51. B. Deb and G. Kurizki, “Formation of giant quasibound cold diatoms by strong atom-cavity coupling,” Phys. Rev. Lett. 83, 714–717 (1999). [CrossRef]
  52. J. I. Kim, R. B. B. Santos, and P. Nussenzveig, “Manipulation of cold atomic collisions by cavity QED effects,” Phys. Rev. Lett. 86, 1474–1477 (2001). [CrossRef] [PubMed]
  53. M. G. Raizen, J. Koga, B. Sundaram, Y. Kishimoto, H. Takuma, and T. Tajima, “Stochastic cooling of atoms using lasers,” Phys. Rev. A 58, 4757–4760 (1998). [CrossRef]
  54. H. W. Chan, A. T. Black, and V. Vuletić, “Observation of collective-emission-induced cooling of atoms in an optical cavity,” Phys. Rev. Lett. 90, 063003 (2003). [CrossRef] [PubMed]
  55. B. Saubaméa, T. W. Hijmans, S. Kulin, E. Rasel, E. Peik, M. Leduc, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 79, 3146–3149 (1997).
  56. M. Gangl and H. Ritsch, “Cavity-mediated dark-state cool-ing without spontaneous emission,” Phys. Rev. A 64, 063414 (2001). [CrossRef]
  57. M. A. Olshanii and V. G. Minogin, “Three-dimensional velocity-selective coherent population trapping of a (3+3)-level atom,” Opt. Commun. 89, 393–398 (1992). [CrossRef]
  58. M. Gangl and H. Ritsch, “Cavity assisted polarization gradient cooling,” J. Phys. B 35, 4565–4582 (2002). [CrossRef]
  59. T. Fischer, P. Maunz, P. W. H. Pinkse, T. Puppe, and G. Rempe, “Feedback on the motion of a single atom in an optical cavity,” Phys. Rev. Lett. 88, 163002 (2002). [CrossRef] [PubMed]
  60. A. Mosk, S. Jochim, H. Moritz, T. Elsässer, M. Weidemüller, and R. Grimm, “Resonator-enhanced optical dipole trap for fermionic lithium atoms,” Opt. Lett. 26, 1837–1839 (2001). [CrossRef]
  61. J. F. Roch, K. Vigneron, A. Sinatra, and P. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997). [CrossRef]
  62. J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Naegerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” arXiv.org e-Print archive, http://lanl.arxiv.org/abs/quant-ph/0211013 (2002).
  63. P. Horak and H. Ritsch, “Manipulating a Bose-condensate with a single photon,” Eur. Phys. J. D 13, 279–287 (2001). [CrossRef]
  64. P. Horak and H. Ritsch, “Dissipative dynamics of Bose condensates in optical cavities,” Phys. Rev. A 63, 023603 (2001). [CrossRef]
  65. P. Domokos and H. Ritsch, “Efficient loading and cooling in a dynamic optical evanescent-wave microtrap,” Europhys. Lett. 54, 306–312 (2001). [CrossRef]
  66. P. Horak and H. Ritsch, “Cavity assisted quasiparticle damping in a Bose–Einstein condensate,” Phys. Rev. A 63, 051603 (2001). [CrossRef]
  67. D. Jaksch, S. Gardiner, K. Schulze, J. Cirac, and P. Zoller, “Uniting Bose-Einstein condensates in optical resonators,” Phys. Rev. Lett. 86, 4773–4776 (2001). [CrossRef]
  68. R. Bonifacio, G. Robb, and B. M. Neil, “Propagation, cavity, and Doppler-broadening effects in the collective atomic recoil laser,” Phys. Rev. A 56, 912–924 (1997). [CrossRef]
  69. R. Bonifacio, L. D. Salvo, L. M. Narducci, and E. J. D’Angelo, “Exponential gain and self-bunching in a collective atomic recoil laser,” Phys. Rev. A 50, 1716–1724 (1994). [CrossRef] [PubMed]
  70. P. Berman, “Comparison of recoil-induced resonances and the collective atomic recoil laser,” Phys. Rev. A 59, 585–596 (2001). [CrossRef]
  71. R. Bonifacio, B. M. Neil, and G. Robb, “Self-cooling in a system of driven two-level atoms,” Opt. Commun. 161, 1–5 (1999). [CrossRef]
  72. V. Vuletić, “Cavity cooling with a hot cavity,” in Laser Physics at the Limits, H. Figger, D. Meschede, and C. Zimmermann, eds. (Springer, New York, 2001), pp. 67–74.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited