OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 1135–1140

Collision rates in near-resonant optical lattices

Jyrki Piilo  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 1135-1140 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple method for calculating the binary collision rate between atoms in near-resonant optical lattices. The method is based on Monte Carlo wave-function simulations, and the collision rate is obtained by monitoring the quantum flux beyond the average distance between the atoms. To illustrate the usefulness of the method, we calculate the collision rates for a wide range of occupation densities and various modulation depths of the lattice. The method presented here, combined with the semiclassical calculations accounting for intrawell collisions, can simplify the study of the effects of binary collisions on the dynamics of atomic clouds trapped in near-resonant optical lattices.

© 2003 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(020.7010) Atomic and molecular physics : Laser trapping

Jyrki Piilo, "Collision rates in near-resonant optical lattices," J. Opt. Soc. Am. B 20, 1135-1140 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045 (1989). [CrossRef]
  2. P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, “Optical molasses and multilevel atoms: theory,” J. Opt. Soc. Am. B 6, 2058–2071 (1989). [CrossRef]
  3. P. S. Jessen and I. H. Deutsch, “Optical lattices,” Adv. At., Mol., Opt. Phys. 37, 95–138 (1996). [CrossRef]
  4. D. R. Meacher, “Optical lattices–crystalline structures bound by light,” Contemp. Phys. 39, 329–350 (1998). [CrossRef]
  5. S. Rolston, “Optical lattices,” Phys. World 11, 27–32 (1998).
  6. L. Guidoni and P. Verkerk, “Optical lattices: cold atoms ordered by light,” J. Opt. B: Quantum Semiclassical Opt. 1, R23–R45 (1999). [CrossRef]
  7. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, Berlin, 1999).
  8. J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999). [CrossRef]
  9. K.-A. Suominen, “Theories for cold atomic collisions in light fields,” J. Phys. B 29, 5981–6007 (1996). [CrossRef]
  10. J. Lawall, C. Orzel, and S. L. Rolston, “Suppression and enhancement of collisions in optical lattices,” Phys. Rev. Lett. 80, 480–483 (1998). [CrossRef]
  11. H. Kunugita, T. Ido, and F. Shimizu, “Ionizing collisional rate of metastable rare-gas atoms in an optical lattice,” Phys. Rev. Lett. 79, 621–624 (1997). [CrossRef]
  12. E. V. Goldstein, P. Pax, and P. Meystre, “Dipole–dipole interaction in three-dimensional optical lattices,” Phys. Rev. A 53, 2604–2615 (1996). [CrossRef] [PubMed]
  13. C. Boisseau and J. Vigué, “Laser-dressed molecular interactions at long range,” Opt. Commun. 127, 251–256 (1996). [CrossRef]
  14. A. M. Guzmán and P. Meystre, “Dynamical effects of the dipole–dipole interaction in three-dimensional optical lattices,” Phys. Rev. A 57, 1139–1148 (1998). [CrossRef]
  15. C. Menotti and H. Ritsch, “Mean-field approach to dipole–dipole interaction in an optical lattice,” Phys. Rev. A 60, R2653–R2656 (1999). [CrossRef]
  16. C. Menotti and H. Ritsch, “Laser cooling of atoms in optical lattices including quantum statistics and dipole–dipole interactions,” Appl. Phys. B 69, 311–321 (1999). [CrossRef]
  17. J. Piilo, K.-A. Suominen, and K. Berg-Sørensen, “Cold collisions between atoms in optical lattices,” J. Phys. B 34, L231–L237 (2001). [CrossRef]
  18. J. Piilo, K.-A. Suominen, and K. Berg-Sørensen, “Atomic collision dynamics in optical lattices,” Phys. Rev. A 65, 033411 (2002). [CrossRef]
  19. J. Piilo and K.-A. Suominen, “Optical shielding of cold collisions in blue-detuned near-resonant optical lattices,” Phys. Rev. A 66, 013401 (2002). [CrossRef]
  20. J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992). [CrossRef] [PubMed]
  21. K. Mølmer, Y. Castin, and J. Dalibard, “Monte Carlo wave-function method in quantum optics,” J. Opt. Soc. Am. B 10, 524–538 (1993). [CrossRef]
  22. K. Mølmer and Y. Castin, “Monte Carlo wavefunctions in quantum optics,” Quantum Semiclassic. Opt. 8, 49–72 (1996). [CrossRef]
  23. M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101–144 (1998). [CrossRef]
  24. M. J. Holland, K.-A. Suominen, and K. Burnett, “Quantal treatment of cold collisions in a laser field,” Phys. Rev. Lett. 72, 2367–2370 (1994). [CrossRef] [PubMed]
  25. M. J. Holland, K.-A. Suominen, and K. Burnett, “Cold collisions in a laser field: quantum Monte Carlo treatment of radiative heating,” Phys. Rev. A 50, 1513–1530 (1994). [CrossRef] [PubMed]
  26. This will depend on the particular form of the lattice (see also the discussion on occupation density in Ref. 18).
  27. K.-A. Suominen, Y. B. Band, I. Tuvi, K. Burnett, and P. S. Julienne, “Quantum and semiclasical calculations of cold atom collisions in light fields,” Phys. Rev. A 57, 3724–3738 (1998). [CrossRef]
  28. K. I. Petsas, G. Grynberg, and J.-Y. Courtois, “Semiclassical Monte Carlo Approaches for Realistic Atoms in Optical Lattices,” Eur. Phys. J. D 6, 29–47 (1999). [CrossRef]
  29. Y. Castin, J. Dalibard, and C. Cohen-Tannoudji, “The limits of Sisyphus cooling,” in Proceedings of Light-Induced Kinetic Effects on Atoms, Ions and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, and F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991), pp. 1–24.
  30. Naturally, the methods without the extra potential of Eq. (8) should be used when one wants to calculate the thermodynamical properties of an atomic cloud in the whole lattice. These methods are already well-known; the purpose here is to give a new method for calculation of the collision rate.
  31. See Ref. 18 for the details of the jump operators that are used in our implementation of the method.
  32. It takes a finite length of time before the atoms begin to accumulate in the accumulation region. This is due to the finite distance between the initial lattice site and the accumulation region; see Fig. 1. Thus there is a small time delay in the simulation before the accumulation curve in Fig. 2 begins to increase and achieves nonzero values. We emphasize that it is only the slope β of the accumulation curve that is relevant for the collision-rate calculation here.
  33. This is in agreement with the result given in Ref. 10 where the collisions are also a measure of atomic transport in a lattice.
  34. F. Bardou, J. P. Bouchaud, O. Emile, A. Aspect, and C. Cohen-Tannoudji, “Subrecoil laser cooling and Lévy flights,” Phys. Rev. Lett. 72, 203–206 (1994). [CrossRef] [PubMed]
  35. S. Marksteiner, K. Ellinger, and P. Zoller, “Anomalous diffusion and Lévy walks in optical lattices,” Phys. Rev. A 53, 3409–3430 (1996). [CrossRef] [PubMed]
  36. W. Greenwood, P. Pax, and P. Meystre, “Atomic transport on one-dimensional optical lattices,” Phys. Rev. A 56, 2109–2122 (1997). [CrossRef]
  37. P. M. Visser and G. Nienhuis, “Quantum transport of atoms in an optical lattice,” Phys. Rev. A 56, 3950–3960 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited