OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 801–809

Waveguides in three-dimensional layer-by-layer photonic crystals

Zhi-Yuan Li and Kai-Ming Ho  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 801-809 (2003)

View Full Text Article

Acrobat PDF (764 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic crystal waveguide network can form in a three-dimensional layer-by-layer photonic crystal along three orthogonal directions. We investigate guided-mode band structures for different waveguide configurations by numerical calculations that combine a plane-wave expansion method with a supercell technique. The in-plane waveguide network composed of waveguides along the (100) and (010) directions of the crystal is located in a single layer of the photonic crystal. This structural design is easy to achieve experimentally. One can create these in-plane waveguides either by removing one single rod or by breaking a segment in each of an array of parallel rods. One produces the off-plane waveguide by removing some segments of rods along the (001) stacking direction of the crystal. Single-mode operation of a waveguide can be achieved by appropriate adjustment of geometrical parameters such as the location and the size of the waveguide. Intrinsic lattice symmetries in these photonic crystal waveguides have been fully employed to reduce the complexity of the numerical solution of guided-mode band structures significantly.

© 2003 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides

Zhi-Yuan Li and Kai-Ming Ho, "Waveguides in three-dimensional layer-by-layer photonic crystals," J. Opt. Soc. Am. B 20, 801-809 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
  4. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
  5. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
  6. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
  7. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
  8. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villineneve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Haus, and A. Allenman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
  9. D. Nedeljkovi, T. P. Pearsall, S. A. Kuchinsky, M. D. Mikhailov, M. Lonar, and A. Scherer, “Planar photonic crystal,” in, Nanoscale Linear and Nonlinear Optics: International School on Quantum Electronics M. Bertolitti, C. M. Bowden, and C. Sibilia, eds., AIP Conf. Proc. 560, 107–114 (2001).
  10. T. F. Krauss, “Photonic crystals for integrated optics,” in Nanoscale Linear and Nonlinear Optics: International School on Quantum Electronics M. Bertolitti, C. M. Bowden, and C. Sibilia, eds., AIP Conf. Proc. 560, 89–98 (2001).
  11. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys. 91, 922–929 (2002).
  12. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
  13. M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B 63, 081107 (2001).
  14. M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
  15. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
  16. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zurbrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
  17. J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett. 24, 49–51 (1999).
  18. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
  19. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
  20. Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58, 3721–3729 (1998).
  21. Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519 (2000).
  22. A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999).
  23. A. Chutinan and S. Noda, “Design for waveguides in three-dimensional photonic crystals,” Jpn. J. Appl. Phys. 39, 2353–2356 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited