OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 878–881

Adaptive shaping of femtosecond polarization profiles

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 878-881 (2003)

View Full Text Article

Acrobat PDF (212 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the experimental implementation of femtosecond polarization pulse shaping within an adaptive learning loop. This technique makes it possible to optimally and automatically generate light fields in which intensity, momentary frequency, and light polarization (i.e., ellipticity and orientation) change as a function of time within a single femtosecond laser pulse. By use of second-harmonic generation as a feedback signal in an evolutionary algorithm, specific phase- and polarization-modulated laser pulses are generated. Material dispersion and time-dependent modulations of the polarization state can be compensated. These experiments demonstrate the feasibility of adaptive quantum control experiments with polarization-shaped femtosecond laser pulses.

© 2003 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(320.5540) Ultrafast optics : Pulse shaping
(320.7160) Ultrafast optics : Ultrafast technology

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, "Adaptive shaping of femtosecond polarization profiles," J. Opt. Soc. Am. B 20, 878-881 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. M. Weiner, D. E. Leaird, A. Patel, and J. R. Wullert II, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–920 (1992).
  2. M. M. Wefers and K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049 (1995).
  3. M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 12, 1343–1362 (1995).
  4. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
  5. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
  6. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
  7. T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B 68, 281–284 (1999).
  8. W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993).
  9. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).
  10. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
  11. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
  12. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
  13. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B [Suppl.] 74, S133–S144 (2002).
  14. J. J. Larsen, K. Hald, N. Bjerre, and H. Stapelfeldt, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470–2473 (2000).
  15. D. N. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Yu. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85, 542–545 (2000).
  16. D. G. Lappas and J. P. Marangos, “Orientation dependence of high-order harmonic generation in hydrogen molecular ions,” J. Phys. B 33, 4679–4689 (2000).
  17. P. B. Corkum, N. H. Burnett, and M. Yu. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19, 1870–1872 (1994).
  18. E. Constant, V. D. Taranukhin, A. Stolow, and P. B. Corkum, “Methods for the measurement of the duration of high-harmonic pulses,” Phys. Rev. A 56, 3870–3878 (1997).
  19. M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, “Combination of high-intensity femtosecond laser pulses for generation of time-dependent polarization pulses and ionization of atomic gas,” Appl. Phys. B [Suppl.] 70, S207–S213 (2000).
  20. M. M. Wefers, H. Kawashima, and K. A. Nelson, “Optical control over two-dimensional lattice vibrational trajectories in crystalline quartz,” J. Chem. Phys. 108, 10248–10255 (1998).
  21. J. A. Cina and V. Romero-Rochin, “Optical impulsive excitation of molecular pseudorotation in Jahn–Teller systems,” J. Chem. Phys. 93, 3844–3849 (1990).
  22. M. Shapiro and P. Brumer, “Controlled photon induced symmetry breaking: chiral molecular products from achiral precursors,” J. Chem. Phys. 95, 8658–8661 (1991).
  23. M. Shapiro, E. Frishman, and P. Brumer, “Coherently controlled asymmetric synthesis with achiral light,” Phys. Rev. Lett. 84, 1669–1672 (2000).
  24. Y. Fujimura, L. González, K. Hoki, J. Manz, and Y. Ohtsuki, “Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH,” Chem. Phys. Lett. 306, 1–8 (1999).
  25. K. Hoki, D. Kröner, and J. Manz, “Selective preparation of enantiomers from a racemate by laser pulses: model simulation for oriented atropisomers with coupled rotations and torsions,” Chem. Phys. 267, 59–79 (2001).
  26. T. Brixner, “Poincaré representation of polarization-shaped femtosecond laser pulses,” Appl. Phys. B (to be published).
  27. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81–83 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited