OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 887–908

Laser cooling and trapping of atoms

H. J. Metcalf and P. van der Straten  »View Author Affiliations


JOSA B, Vol. 20, Issue 5, pp. 887-908 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000887


View Full Text Article

Enhanced HTML    Acrobat PDF (554 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A review is presented of some of the principal techniques of laser cooling and trapping that have been developed during the past 20 years. Its approach is primarily experimental, but its quantitative descriptions are consistent in notation with most of the theoretical literature. It begins with a simplified introduction to optical forces on atoms, including both cooling and trapping. Then its three main sections discuss its three selected features, (1) quantization of atomic motion, (2) effects of the multilevel structure of atoms, and (3) the effects of polychromatic light. Each of these features is an expansion in a different direction from the simplest model of a classical, two-level atom moving in a monochromatic laser field.

© 2003 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(300.6210) Spectroscopy : Spectroscopy, atomic

Citation
H. J. Metcalf and P. van der Straten, "Laser cooling and trapping of atoms," J. Opt. Soc. Am. B 20, 887-908 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-5-887


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York, 1999).
  2. W. Phillips and H. Metcalf, “Laser deceleration of an atomic beam,” Phys. Rev. Lett. 48, 596–599 (1982). [CrossRef]
  3. J. Prodan, W. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982). [CrossRef]
  4. J. Prodan and W. Phillips, “Chirping the light fantastic?—recent NBS atom cooling experiments,” Prog. Quantum Electron. 8, 231–235 (1984). [CrossRef]
  5. W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996–999 (1985). [CrossRef] [PubMed]
  6. R. Watts and C. Wieman, “Manipulating atomic velocities using diode lasers,” Opt. Lett. 11, 291–293 (1986). [CrossRef] [PubMed]
  7. V. Bagnato, G. Lafyatis, A. Martin, E. Raab, R. Ahmad-Bitar, and D. Pritchard, “Continuous stopping and trapping of neutral atoms,” Phys. Rev. Lett. 58, 2194–2197 (1987). [CrossRef] [PubMed]
  8. T. E. Barrett, S. W. Dapore-Schwartz, M. D. Ray, and G. P. Lafyatis, “Slowing atoms with (σ)-polarized light,” Phys. Rev. Lett. 67, 3483–3487 (1991). [CrossRef] [PubMed]
  9. P. A. Molenaar, P. van der Straten, H. G. M. Heideman, and H. Metcalf, “Diagnostic technique for Zeeman-compensated atomic-beam slowing—technique and results,” Phys. Rev. A 55, 605–614 (1997). [CrossRef]
  10. J. Dalibard and W. Phillips, “Stability and damping of radiation pressure traps,” Bull. Am. Phys. Soc. 30, 748 (1985).
  11. S. Chu, L. Hollberg, J. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985). [CrossRef] [PubMed]
  12. B. Sheehy, S. Q. Shang, P. van der Straten, and H. Metcalf, “Collimation of a rubidium beam below the Doppler limit,” Chem. Phys. 145, 317–325 (1990). [CrossRef]
  13. P. Gould, P. Lett, and W. D. Phillips, “New measurement with optical molasses,” in Laser Spectroscopy VIII, W. Persson and S. Svanberg, eds. (Springer-Verlag, Berlin, 1987), pp. 64–00.
  14. T. Hodapp, C. Gerz, C. Westbrook, C. Furtlehner, and W. Phillips, “Diffusion in optical molasses,” Bull. Am. Phys. Soc. 37, 1139 (1992).
  15. P. Lett, R. Watts, C. Westbrook, W. Phillips, P. Gould, and H. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988). [CrossRef] [PubMed]
  16. P. D. Lett, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084–2107 (1989). [CrossRef]
  17. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  18. S. Chu, J. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986). [CrossRef] [PubMed]
  19. A. Ashkin, “Application of laser radiation pressure,” Science 210, 1081–1088 (1980). [CrossRef] [PubMed]
  20. A. Ashkin and J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985). [CrossRef] [PubMed]
  21. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
  22. J. D. Miller, R. A. Cline, and D. J. Heinzen, “Far-off-resonance optical trapping of atoms,” Phys. Rev. A 47, R4567–R4570 (1993). [CrossRef] [PubMed]
  23. C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995). [CrossRef] [PubMed]
  24. T. Takekoshi and R. J. Knize, “CO2-laser trap for cesium atoms,” Opt. Lett. 21, 77–79 (1996). [CrossRef] [PubMed]
  25. H. Metcalf and W. Phillips, “Electromagnetic trapping of neutral atoms,” Metrologia 22, 271–278 (1986). [CrossRef]
  26. N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995). [CrossRef] [PubMed]
  27. A. Siegman, Lasers (University Sciences, Mill Valley, Calif., 1986).
  28. N. Simpson, K. Dholakia, L. Allen, and M. Padgett, “The mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997). [CrossRef] [PubMed]
  29. D. McGloin, N. Simpson, and M. Padgett, “Transfer of orbital angular momentum from a stressed fiber optic waveguide to a light beam,” Appl. Opt. 37, 469–472 (1998). [CrossRef]
  30. M. Beijersbergen, “Phase singularities in optical beams,” Ph.D. thesis (Leiden University, Leiden, The Netherlands, 1996).
  31. Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997). [CrossRef]
  32. C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, “Cesium atoms bouncing in a stable gravitational cavity,” Phys. Rev. Lett. 71, 3083–3086 (1993). [CrossRef] [PubMed]
  33. M. A. Kasevich, D. S. Weiss, and S. Chu, “Normal-incidence reflection of slow atoms from an optical evanescent wave,” Opt. Lett. 15, 607–609 (1990). [CrossRef] [PubMed]
  34. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988). [CrossRef] [PubMed]
  35. F. Bardou, J. P. Bouchaud, O. Emile, A. Aspect, and C. Cohen-Tannoudji, “Subrecoil laser cooling and Levy flights,” Phys. Rev. Lett. 72, 203–206 (1994). [CrossRef] [PubMed]
  36. J. Hack, L. Liu, M. Olshanii, and H. Metcalf, “Velocity-selective coherent population trapping of two-level atoms,” Phys. Rev. A 62, 013405 (2000). [CrossRef]
  37. A. Aspect, C. Cohen-Tannoudji, E. Arimondo, N. Vansteenkiste, and R. Kaiser, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping—theoretical analysis,” J. Opt. Soc. Am. B 6, 2112–2124 (1989). [CrossRef]
  38. H. Batelaan, E. Rasel, M. Oberthaler, J. Schmeidmayer, and A. Zeilinger, “Classical and quantum atom fringes,” in Atom Interferometry, P. Berman, ed. (Academic, New York, 1997), pp. 85–120.
  39. E. Arimondo, “Velocity-selective coherent population trapping in one and two dimensions,” in Laser Manipulation of Atoms and Ions, Proceedings of the International School of Physics “Enrico Fermi,” Course CXVII, E. Arimondo, W. Phillips, and F. Strumia, eds. (North Holland, Amsterdam, 1991), pp. 191–224.
  40. G. Morigi, B. Zambon, N. Leinfellner, and E. Arimondo, “Scaling laws in velocity-selective coherent-population-trapping laser cooling,” Phys. Rev. A 53, 2616–2626 (1996). [CrossRef] [PubMed]
  41. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
  42. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002). [CrossRef] [PubMed]
  43. V. S. Letokhov, “Narrowing of the Doppler width in a standing light wave,” JETP Lett. 7, 272 (1968).
  44. C. Salomon, J. Dalibard, A. Aspect, H. Metcalf, and C. Cohen-Tannoudji, “Channeling atoms in a laser standing wave,” Phys. Rev. Lett. 59, 1659–1662 (1987). [CrossRef] [PubMed]
  45. Y. Castin and J. Dalibard, “Quantization of atomic motion in optical molasses,” Europhys. Lett. 14, 761–766 (1991). [CrossRef]
  46. P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudji, J. Y. Courtois, and G. Grynberg, “Dynamics and spatial order of cold cesium atoms in a periodic optical potential,” Phys. Rev. Lett. 68, 3861–3864 (1992). [CrossRef] [PubMed]
  47. P. S. Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and C. I. Westbrook, “Observation of quantized motion of Rb atoms in an optical field,” Phys. Rev. Lett. 69, 49–52 (1992). [CrossRef] [PubMed]
  48. B. Lounis, P. Verkerk, J. Y. Courtois, C. Salomon, and G. Grynberg, “Quantized atomic motion in 1D cesium molasses with magnetic field,” Europhys. Lett. 21, 13–17 (1993). [CrossRef]
  49. R. Gupta, S. Padua, C. Xie, H. Batelaan, T. Bergeman, and H. Metcalf, “Motional quantization of laser cooled atoms,” Bull. Am. Phys. Soc. 37, 1139 (1992).
  50. R. Gupta, S. Padua, T. Bergeman, and H. Metcalf, “Search for motional quantization of laser-cooled atoms,” in Laser Manipulation of Atoms and Ions, Proceedings of the International School of Physics “Enrico Fermi,” Course CXVIII, E. Arimondo, W. Phillips, and F. Strumia, eds. (North Holland, Amsterdam, 1991), pp. 345–360.
  51. B. P. Anderson and M. A. Kasevich, “Macroscopic quantum interference from atomic tunnel arrays,” Nature 282, 1686–1689 (1998).
  52. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002). [CrossRef] [PubMed]
  53. G. Grynberg, B. Lounis, P. Verkerk, J. Y. Courtois, and C. Salomon, “Quantized motion of cold cesium atoms in 2-dimensional and 3-dimensional optical potentials,” Phys. Rev. Lett. 70, 2249–2252 (1993). [CrossRef] [PubMed]
  54. G. Birkl, M. Gatzke, I. H. Deutsch, S. L. Rolston, and W. D. Phillips, “Bragg scattering from atoms in optical lattices,” Phys. Rev. Lett. 75, 2823–2826 (1995). [CrossRef] [PubMed]
  55. C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, “Localization of atoms in a 3-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990). [CrossRef] [PubMed]
  56. M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996). [CrossRef] [PubMed]
  57. J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients—simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045 (1989). [CrossRef]
  58. P. J. Ungar, D. S. Weiss, S. Chu, and E. Riis, “Optical molasses and multilevel atoms—theory,” J. Opt. Soc. Am. B 6, 2058–2071 (1989). [CrossRef]
  59. C. Cohen-Tannoudji and W. D. Phillips, “New mechanisms for laser cooling,” Phys. Today 43(10), 33–40 (1990). [CrossRef]
  60. R. Gupta, S. Padua, C. Xie, H. Batelaan, and H. Metcalf, “Simplest atomic system for sub-Doppler laser cooling,” J. Opt. Soc. Am. B 11, 537–541 (1994). [CrossRef]
  61. C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, “Laser cooling of cesium atoms below 3 μK,” Europhys. Lett. 12, 683–688 (1990). [CrossRef]
  62. J. Dalibard, C. Salomon, A. Aspect, E. Arimondo, N. Vansteenkiste, and C. Cohen-Tannoudji, “New schemes in laser cooling,” in Atomic Physics XI, S. Haroche, J.-C. Gay, and G. Grynberg, eds. (World Scientific, Singapore, 1989), pp. 199–214.
  63. B. Sheehy, S. Q. Shang, P. van der Straten, S. Hatamian, and H. Metcalf, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys. Rev. Lett. 64, 858–861 (1990). [CrossRef] [PubMed]
  64. W. Ketterle and N. J. Vandruten, “Evaporative cooling of trapped atoms,” Adv. Atom. Mol. Opt. Phys. 37, 181–236 (1996). [CrossRef]
  65. M. Kasevich and S. Chu, “Laser cooling below a photon recoil with 3-level atoms,” Phys. Rev. Lett. 69, 1741–1744 (1992). [CrossRef] [PubMed]
  66. E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of neutral-sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987). [CrossRef] [PubMed]
  67. H. Metcalf, “Magneto-optical trapping and its application to helium metastables,” J. Opt. Soc. Am. B 6, 2206–2210 (1989). [CrossRef]
  68. P. Molenaar, “Photoassociative reactions of laser-cooled sodium,” Ph.D. thesis (Utrecht University, Utrecht, The Netherlands, 1995).
  69. E. A. Cornell, C. Monroe, and C. E. Wieman, “Multiply loaded, ac magnetic trap for neutral atoms,” Phys. Rev. Lett. 67, 2439–2442 (1991). [CrossRef] [PubMed]
  70. A. M. Steane and C. J. Foot, “Laser cooling below the Doppler limit in a magnetooptical trap,” Europhys. Lett. 14, 231–236 (1991). [CrossRef]
  71. A. M. Steane, M. Chowdhury, and C. J. Foot, “Radiation force in the magnetooptical trap,” J. Opt. Soc. Am. B 9, 2142–2158 (1992). [CrossRef]
  72. T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Phys. Rev. Lett. 64, 408–411 (1990). [CrossRef] [PubMed]
  73. D. W. Sesko, T. G. Walker, and C. E. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8, 946–958 (1991). [CrossRef]
  74. K. E. Gibble, S. Kasapi, and S. Chu, “Improved magnetooptic trapping in a vapor cell,” Opt. Lett. 17, 526–528 (1992). [CrossRef] [PubMed]
  75. K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992). [CrossRef] [PubMed]
  76. W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70, 2253–2256 (1993). [CrossRef] [PubMed]
  77. J. Söding, R. Grimm, Yu. B. Ovchinnikov, P. Bouyer, and C. Salomon, “Short-distance atomic-beam deceleration with a stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997). [CrossRef]
  78. R. Grimm, Yu. B. Ovchinnikov, A. I. Sidorov, and V. S. Letokhov, “Observation of a strong rectified dipole force in a bichromatic standing light wave,” Phys. Rev. Lett. 65, 1415–1418 (1990). [CrossRef] [PubMed]
  79. R. Gupta, C. Xie, S. Padua, H. Batelaan, and H. Metcalf, “Bichromatic laser cooling in a 3-level system,” Phys. Rev. Lett. 71, 3087–3090 (1993). [CrossRef] [PubMed]
  80. M. Cashen, O. Rivoire, V. Romanenko, L. Yatsenko, and H. Metcalf, “Strong optical forces in frequency-modulated light,” Phys. Rev. A 64, 063411 (2001). [CrossRef]
  81. M. Williams, F. Chi, M. Cashen, and H. Metcalf, “Measurement of the bichromatic optical force on Rb atoms,” Phys. Rev. A 60, R1763–R1766 (1999). [CrossRef]
  82. M. Williams, F. Chi, M. Cashen, and H. Metcalf, “Bichromatic force measurements using atomic beam deflections,” Phys. Rev. A 61, 023408 (2000). [CrossRef]
  83. M. Cashen and H. Metcalf, “Bichromatic force on helium,” Phys. Rev. A 63, 025406 (2001). [CrossRef]
  84. M. Cashen, O. Rivoire, L. Yatsenko, and H. Metcalf, “Coherent exchange of momentum between atoms and light,” J. Opt. B 4, 75–79 (2002). [CrossRef]
  85. A. Goepfert, I. Bloch, D. Haubrich, F. Lison, R. Schütze, R. Wynands, and D. Meschede, “Stimulated focusing and deflection of an atomic beam using picosecond laser pulses,” Phys. Rev. A 56, R3354–R3357 (1997). [CrossRef]
  86. R. Grimm, J. Söding, and Yu. B. Ovchinnikov, “Coherent beam splitter for atoms based on a bichromatic standing light wave,” Opt. Lett. 19, 658–660 (1994). [CrossRef] [PubMed]
  87. R. Grimm, G. Wasik, J. Söding, and Yu. B. Ovchinnikov, “Laser cooling and trapping with rectified optical dipole forces,” in Coherent and Collective Interactions of Particle Beams, Proceedings of the International School of Physics “Enrico Fermi,” Course CXXXI, A. Aspect, W. Barletta, and R. Bonifacio, eds. (IOS, Amsterdam, 1996), pp. 481–502.
  88. E. Kyrola and S. Stenholm, “Velocity tuned resonances as multi-Doppleron processes,” Opt. Commun. 22, 123–126 (1977). [CrossRef]
  89. M. Cashen and H. Metcalf, “Optical forces on atoms in nonmonochromatic light,” J. Opt. Soc. Am. B 20, 915–924 (2003). [CrossRef]
  90. I. Nebenzahl and A. Szoke, “Deflection of atomic beams by resonance radiation using stimulated emission,” Appl. Phys. Lett. 25, 327–329 (1974). [CrossRef]
  91. V. Voitsekovich, M. Danileiko, A. Negriiko, V. Romanenko, and L. Yatsenko, “Pressure of light on atoms in the field of frequency-modulated waves,” Ukr. Fiz. Zh. (Russ. Ed.) 36, 192–197 (1991).
  92. G. Demeter, G. Djotyan, and J. Bakos, “Deflection and splitting of atomic beams with counterpropagating, short, chirped laser pulses,” J. Opt. Soc. Am. B 15, 16–24 (1998). [CrossRef]
  93. R. Feynman, F. Vernon, and R. Hellwarth, “Geometrical representation of the Schrödinger equation for solving maser problems,” J. App. Phys. 28, 49–52 (1957). [CrossRef]
  94. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited