OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 937–941

Diffraction-limited optical dipole trap with a hollow optical fiber

Yong-Il Shin, Myoungsun Heo, Jae-Wan Kim, Wooshik Shim, Heung-Ryoul Noh, and Wonho Jhe  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 937-941 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel three-dimensional diffraction-limited far-off-resonance optical dipole trap (DFORT) for neutral atoms operating in the Lamb–Dicke regime. Such a microscopic DFORT is generated by the diffracted LP01 mode of a hollow-core optical fiber near the fiber facet. For 87Rb and 133Cs atoms, we estimate that with a 100-mW trap-laser power, a cigar-shaped far-off-resonance optical dipole trap provides potential depth U010 mK, radial (axial) trap frequency fr100 kHz(fz10 kHz), and trap volume Vtrap104λ3. The DFORT has the unique feature of a tightly focused trap with a large trap volume and convenient loading and cooling of the precooled atoms, which may be useful for optical Bose–Einstein condensation. A DFORT may be also operated as an elongated one-dimensional optical trap.

© 2003 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(050.1940) Diffraction and gratings : Diffraction
(300.6210) Spectroscopy : Spectroscopy, atomic

Yong-Il Shin, Myoungsun Heo, Jae-Wan Kim, Wooshik Shim, Heung-Ryoul Noh, and Wonho Jhe, "Diffraction-limited optical dipole trap with a hollow optical fiber," J. Opt. Soc. Am. B 20, 937-941 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995). [CrossRef] [PubMed]
  2. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995). [CrossRef] [PubMed]
  3. M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741–1744 (1992). [CrossRef] [PubMed]
  4. S. E. Hamann, D. L. Haycock, G. Klose, P. H. Pax, I. H. Deutsch, and P. S. Jessen, “Resolved-sideband Raman cooling to the ground state of an optical lattice,” Phys. Rev. Lett. 80, 4149–4152 (1998). [CrossRef]
  5. V. Vuletić, C. Chin, A. J. Kerman, and S. Chu, “Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities,” Phys. Rev. Lett. 81, 5768–5771 (1998). [CrossRef]
  6. A. J. Kerman, V. Vuletić, C. Chin, and S. Chu, “Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density,” Phys. Rev. Lett. 84, 439–442 (2000). [CrossRef] [PubMed]
  7. C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995). [CrossRef] [PubMed]
  8. D. Boiron, A. Michaud, J. M. Fournier, L. Simard, M. Sprenger, G. Grynberg, and C. Salomon, “Cold and dense cesium clouds in far-detuned dipole traps,” Phys. Rev. A 57, R4106–R4109 (1998). [CrossRef]
  9. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999). [CrossRef]
  10. M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose–Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001). [CrossRef]
  11. D. W. Sesko, T. G. Walker, and C. E. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8, 946–958 (1991). [CrossRef]
  12. Y. Castin, J. I. Cirac, and M. Lewenstein, “Reabsorption of light by trapped atoms,” Phys. Rev. Lett. 80, 5305–5308 (1998). [CrossRef]
  13. U. Janicke and M. Wilkens, “Prospects of matter wave amplification,” Europhys. Lett. 35, 561–566 (1996). [CrossRef]
  14. J. I. Cirac, M. Lewenstein, and P. Zoller, “Collective laser cooling of trapped atoms,” Europhys. Lett. 35, 647–651 (1996). [CrossRef]
  15. G. Morigi, J. I. Cirac, M. Lewenstein, and P. Zoller, “Ground-state laser cooling beyond the Lamb–Dicke limit,” Europhys. Lett. 39, 13–18 (1997). [CrossRef]
  16. J. D. Miller, R. A. Cline, and D. J. Heinzen, “Far-off-resonance optical trapping of atoms,” Phys. Rev. A 47, R4567–R4570 (1993). [CrossRef] [PubMed]
  17. D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, “Optical confinement of a Bose–Einstein condensate,” Phys. Rev. Lett. 80, 2027–2030 (1998). [CrossRef]
  18. S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, “Loading an optical dipole trap,” Phys. Rev. A 62, 013406 (2000). [CrossRef]
  19. R. Grimm, M. Weidemüller, and Yu. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000). [CrossRef]
  20. S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Phys. Rev. A 57, R20–R23 (1998). [CrossRef]
  21. M. T. DePue, C. McCormick, S. L. Winoto, S. Oliver, and D. S. Weiss, “Unity occupation of sites in a 3D optical lattice,” Phys. Rev. Lett. 82, 2262–2265 (1999). [CrossRef]
  22. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995). [CrossRef] [PubMed]
  23. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996). [CrossRef] [PubMed]
  24. S. H. Yoo, C. Won, J. A. Kim, K. Kim, U. Shim, K. Oh, U. C. Paek, and W. Jhe, “Diffracted near field of hollow optical fibre for a novel atomic funnel,” J. Opt. B 1, 364–370 (1999). [CrossRef]
  25. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, “Optical potential for atom guidance in a cylindrical-core hollow fiber,” Opt. Commun. 115, 57–64 (1995). [CrossRef]
  26. Y.-I. Shin, K. Kim, J. A. Kim, H. R. Noh, W. Jhe, K. Oh, and U. C. Paek, “Diffraction-limited dark laser spot produced by a hollow optical fiber,” Opt. Lett. 26, 119–121 (2001). [CrossRef]
  27. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  28. J. I. Cirac, M. Lewenstein, and P. Zoller, “Quantum statistics of a laser cooled ideal gas,” Phys. Rev. Lett. 72, 2977–2980 (1994). [CrossRef] [PubMed]
  29. J. I. Cirac, M. Lewenstein, and P. Zoller, “Quantum dynamics of a laser-cooled ideal gas,” Phys. Rev. A 50, 3409–3422 (1994). [CrossRef] [PubMed]
  30. I. H. Deutsch and P. S. Jessen, “Quantum-state control in optical lattices,” Phys. Rev. A 57, 1972–1986 (1998). [CrossRef]
  31. J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Bose–Einstein condensation in a dilute gas: measurement of energy and ground-state occupation,” Phys. Rev. Lett. 77, 4984–4987 (1996). [CrossRef] [PubMed]
  32. R. Napolitano, J. De Luca, V. S. Bagnato, and G. C. Marques, “Effect of a finite number of particles in the Bose–Einstein condensation of a trapped gas,” Phys. Rev. A 55, 3954–3956 (1997). [CrossRef]
  33. N. J. van Druten and W. Ketterle, “Two-step condensation of the ideal Bose gas in highly anisotropic traps,” Phys. Rev. Lett. 79, 549–552 (1997). [CrossRef]
  34. A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, “Realization of Bose–Einstein condensates in lower dimensions,” Phys. Rev. Lett. 87, 130402 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited