OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 942–952

Magnetic behavior of atoms in gray optical lattices

J. R. Guest, B. K. Teo, N. V. Morrow, and G. Raithel  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 942-952 (2003)

View Full Text Article

Acrobat PDF (711 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The magnetization and lifetimes of atoms in gray optical lattices exhibit modulations as functions of an applied B field that are attributed to tunneling resonances between neighboring lattice wells. Expanding on previous observations, we show how these modulations depend on well depth, and we derive spin temperatures for the system. A band-structure-based model and quantum Monte Carlo wave-function simulations are used to explain these results. We predict subrecoil structures in the velocity distributions; these structures undergo systematic variations when the applied magnetic field is varied. Dramatically different behaviors for bosonic and fermionic spin systems are found and explained.

© 2003 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(020.7490) Atomic and molecular physics : Zeeman effect

J. R. Guest, B. K. Teo, N. V. Morrow, and G. Raithel, "Magnetic behavior of atoms in gray optical lattices," J. Opt. Soc. Am. B 20, 942-952 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. S. Jessen and I. H. Deutsch, “Optical lattices,” Adv. At. Mol. Opt. Phys. 37, 95–138 (1996).
  2. K. I. Petsas, J.-Y. Courtois, and G. Grynberg, “Temperature and magnetism of gray optical lattices,” Phys. Rev. A 53, 2533–2538 (1996).
  3. D. L. Haycock, P. M. Alsing, I. H. Deutsch, J. Grondalski, and P. S. Jessen, “Mesoscopic quantum coherence in an optical lattice,” Phys. Rev. Lett. 85, 3365–3368 (2000).
  4. W. K. Hensinger, H. Häffner, A. Browaeys, N. R. Heckenberg, K. Helmerson, C. McKenzie, G. J. Milburn, W. D. Phillips, S. L. Rolston, H. Rubinsztein-Dunlop, and B. Upcroft, “Dynamical tunneling of ultracold atoms,” Nature 412, 52–55 (2001).
  5. D. A. Steck, W. H. Oskay, and M. G. Raizen, “Fluctuations and decoherence in chaos-assisted tunneling,” Phys. Rev. Lett. 88, 120406(1–4) (2002).
  6. B. K. Teo, J. R. Guest, and G. Raithel, “Tunneling resonances and coherence in an optical lattice,” Phys. Rev. Lett. 88, 173001(1-4) (2002).
  7. J. Guo and P. R. Berman, “One-dimensional laser cooling with linearly polarized fields,” Phys. Rev. A 48, 3225–3232 (1993).
  8. A. Hemmerich, M. Weidemüller, T. Esslinger, C. Zimmermann, and T. Hänsch, “Trapping atoms in a dark optical lattice,” Phys. Rev. Lett. 75, 37–40 (1995).
  9. G. Grynberg and J.-Y. Courtois, “Proposal for a magneto-optical lattice for trapping atoms in nearly dark states,” Europhys. Lett. 27, 41–46 (1994).
  10. S. K. Dutta and G. Raithel, “Tunnelling and the Born–Oppenheimer approximation in optical lattices,” J. Opt. B 2, 651–658 (2000).
  11. R. Dum and M. Olshanni, “Gauge structures in atom–laser interaction: Bloch oscillations in a dark lattice,” Phys. Rev. Lett. 76, 1788–1791 (1996).
  12. S. K. Dutta, B. K. Teo, and G. Raithel, “Tunneling dynamics and gauge potentials in optical lattices,” Phys. Rev. Lett. 83, 1934–1937 (1999).
  13. D. R. Meacher, S. Guibal, C. Mennerat, J.-Y. Courtois, K. I. Petsas, and G. Grynberg, “Paramagnetism in a cesium optical lattice,” Phys. Rev. Lett. 74, 1958–1961 (1995).
  14. G. Raithel, W. D. Phillips, and S. L. Rolston, “Magnetization and spin-flip dynamics of atoms in optical lattices,” Phys. Rev. A 58, R2660–R2663 (1998).
  15. A. Hemmerich, C. Zimmerman, and T. W. Hänsch, “Sub-kHz Rayleigh resonance in a cubic atomic crystal,” Europhys. Lett. 22, 89–94 (1993).
  16. J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992).
  17. K. Mølmer, Y. Castin, and J. Dalibard, “Monte Carlo wave-function method in quantum optics,” J. Opt. Soc. Am. B 10, 524–538 (1993).
  18. R. Kosloff, “Time-dependent quantum-mechanical methods for molecular dynamics,” J. Phys. Chem. 92, 2087–2100 (1988).
  19. Y. Castin and J. Dalibard, “Quantization of atomic motion in optical molasses,” Europhys. Lett. 14, 761–766 (1991).
  20. I. H. Deutsch, P. M. Alsing, J. Grondalski, S. Ghose, D. L. Haycock, and P. S. Jessen, “Quantum transport in magneto-optical double-potential well,” J. Opt. B 2, 633–644 (2000).
  21. The tunneling frequency actually depends on quasi-momentum q. Experimental observations of the tunneling, as explained in Ref. 12, yield a frequency that corresponds to the maximum band splitting. In Fig. 3(c) we show the maximum band splittings at the centers of the respective tunneling resonances.
  22. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited