OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 977–984

Quenched narrow-line second- and third-stage laser cooling of 40 Ca

E. Anne Curtis, Christopher W. Oates, and Leo Hollberg  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 977-984 (2003)

View Full Text Article

Acrobat PDF (169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate three-dimensional quenched narrow-line laser cooling and trapping of 40Ca. With 5 ms of cooling time we can transfer 28% of the atoms from a magneto-optic trap based on the strong 423-nm cooling line to a trap based on the narrow 657-nm clock transition (which is quenched by an intercombination line at 552 nm), thereby reducing the atoms’ temperature from 2 mK to 10 μK. This reduction in temperature should help to reduce the overall systematic frequency uncertainty for our Ca optical frequency standard to <1 Hz. Additional pulsed, quenched, narrow-line third-stage cooling in one dimension yields subrecoil temperatures as low as 300 nK and makes possible the observation of high-contrast two-pulse Ramsey spectroscopic line shapes.

© 2003 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(140.3320) Lasers and laser optics : Laser cooling
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6360) Spectroscopy : Spectroscopy, laser

E. Anne Curtis, Christopher W. Oates, and Leo Hollberg, "Quenched narrow-line second- and third-stage laser cooling of 40 Ca," J. Opt. Soc. Am. B 20, 977-984 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741–1744 (1992).
  2. J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, “Raman cooling of cesium below 3 nK: new approach inspired by Lévy flight statistics,” Phys. Rev. Lett. 75, 4575–4578 (1995).
  3. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
  4. J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, “Two-dimensional subrecoil laser cooling,” Phys. Rev. Lett. 73, 1915–1918 (1994).
  5. C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
  6. T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2000).
  7. G. Wilpers, “Ein optisches Frequenznormal mit kalten und ultakalten Atomen,” Ph.D. dissertation (University of Hannover, Hannover, Germany, 2002), p. 85.
  8. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
  9. K. R. Vogel, T. P. Dineen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48, 618–621 (1999).
  10. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
  11. E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403(R) (2001).
  12. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
  13. C. W. Oates, F. Bondu, R. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. J. Phys. 7, 449–460 (1999).
  14. G. W ilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “An optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
  15. Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836–1848 (1984).
  16. S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
  17. G. J. Dick, “Local oscillator induced instabilities in trapped ion frequency standards,” in Proceedings of the 19th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Redondo Beach, California, December 1–3, 1987 (U.S. Naval Observatory, Washington, D.C., 1988), pp. 133–147.
  18. L. Maleki, ed., special issue on the Dick effect, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 876–905 (1998).
  19. L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
  20. Lorentzian line shapes were also observed for ultracold Sr atoms, as reported by K. R. Vogel, “Laser cooling on a narrow atomic transition and measurement of the two-body cold collision loss rate in a strontium magneto-optical trap,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1999), pp. 159–183.
  21. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
  22. H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
  23. H. Katori, “Spectroscopy of strontium atoms in the Lamb–Dicke confinement,” in Proceedings of the Sixth Symposium of Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2001), pp. 323–330.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited