OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 985–993

Prospects of Doppler cooling on forbidden lines

Uwe Sterr, Tomas Binnewies, Carsten Degenhardt, Guido Wilpers, Jürgen Helmcke, and Fritz Riehle  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 985-993 (2003)

View Full Text Article

Acrobat PDF (530 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Doppler cooling on a forbidden transition is studied experimentally and numerically. By quenching the upper level of the cooling transition, the scattering rate is increased, and 10<sup>6</sup> <sup>40</sup>Ca atoms have been cooled and trapped in a magneto-optical trap to temperatures of down to 6 μK. A model is developed that describes the cooling method by rate equations. Based on the model, Monte Carlo simulations are performed that show good agreement with the experimental results. Possibilities of reaching high densities and low temperature by optimizing the parameters during the cooling phase are discussed, and the benefit of these ultracold atoms for the accuracy and stability of optical frequency standards is demonstrated.

© 2003 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(270.0270) Quantum optics : Quantum optics
(300.6320) Spectroscopy : Spectroscopy, high-resolution

Uwe Sterr, Tomas Binnewies, Carsten Degenhardt, Guido Wilpers, Jürgen Helmcke, and Fritz Riehle, "Prospects of Doppler cooling on forbidden lines," J. Opt. Soc. Am. B 20, 985-993 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
  2. P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
  3. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
  4. M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett. 69, 1741–1744 (1992).
  5. F. Ruschewitz, J. L. Peng, H. Hinderthür, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
  6. C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
  7. F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke, “The optical calcium frequency standard,” IEEE Trans. Instrum. Meas. IM-48, 613–617 (1999).
  8. P. R. Berman, ed., Atom Interferometry (Academic, New York, 1997).
  9. T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collisions of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
  10. G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, “Photoassociation of cold Ca atoms,” Phys. Rev. Lett. 85, 2292–2295 (2000).
  11. M. Machholm, P. S. Julienne, and K.-A. Suominen, “Calculations of collisions between cold alkaline earth atoms in a weak laser field,” Phys. Rev. A 64, 033425 (2001).
  12. T. Ido, Y. Isoya, and H. Katori, “Optical-dipole trapping of Sr atoms at a high phase-space density,” Phys. Rev. A 61, 061403 (2000).
  13. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002 (2001).
  14. E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of 40Ca to near the photon recoil limit,” Phys. Rev. A 64, 031403(R) (2001).
  15. E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line second- and third-stage laser cooling of 40Ca,” J. Opt. Soc. Am. B 20, 977–984 (2003).
  16. Y. Castin, H. Wallis, and J. Dalibard, “Limit of Doppler cooling,” J. Opt. Soc. Am. B 6, 2046–2057 (1989).
  17. H. Wallis and W. Ertmer, “Broadband laser cooling on narrow transitions,” J. Opt. Soc. Am. B 6, 2211–2219 (1989).
  18. L. Pasternack, D. M. Silver, D. R. Yarkony, and P. J. Dagdigian, “Experimental and theoretical study of the Ca I4s3d 1D–4s2 1S and 4s4p 3P1–4s2 1S forbidden transitions,” J. Phys. B 13, 2231–2241 (1980).
  19. R. Whitley and C. Stroud, “Double optical resonance,” Phys. Rev. A 14, 1498–1513 (1976).
  20. W. Rooijakkers, W. Hoogervorst, and W. Vassen, “Laser cooling, friction, and diffusion in a three-level cascade system,” Phys. Rev. A 56, 3083–3092 (1997).
  21. S. M. Tan, “A computational toolbox for quantum and atom optics,” J. Opt. B 1, 424–432 (1999).
  22. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
  23. N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, and G. Vissani, “Measurement of the calcium 1P11D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).
  24. T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth atoms,” Jpn. J. Appl. Phys., Part 1 31, 908–912 (1992).
  25. R. L. Kurucz, “Semiempirical calculations of gf values for the iron group,” Trans. IAU XXB, 168–172 (1988).
  26. V. Pal’chikov, Institute of Metrology for Time and Space at National Research Institute for Physical-Technical and Radiotechnical Measurements, Mendeleevo, Russia (personal communication, 2002).
  27. D. Sesko, T. Walker, and C. Wieman, “Behavior of neutralatoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8, 946–958 (1991).
  28. J. I. Cirac, M. Lewenstein, and P. Zoller, “Collective laser cooling of trapped atoms,” Europhys. Lett. 35, 647–651 (1996).
  29. Y. Castin, J. I. Cirac, and M. Lewenstein, “Reabsorption of light by trapped atoms,” Phys. Rev. Lett. 80, 5305–5308 (1998).
  30. C. J. Bordé, C. Salomon, S. Avrillier, A. Van Lerberghe, C. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with travelling waves,” Phys. Rev. A 30, 1836–1848 (1984).
  31. G. Wilpers, C. Degenhardt, T. Binnewies, A. Chernyshov, F. Riehle, J. Helmcke, and U. Sterr, “Improvement of the fractional uncertainty of a neutral atom calcium optical frequency standard to 2×10−14,” Appl. Phys. B (to be published).
  32. G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
  33. G. Wilpers, “Ein Optisches Frequenznormal mit kalten und ultrakalten Atomen,” PTB-Bericht PTB-Opt-66, Ph.D. dissertation (Physikalisch-Technische Bundesanstalt, University of Hannover, Braunschweig, 2002).
  34. W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: observation of quantum jumps,” Phys. Rev. Lett. 56, 2797–2799 (1986).
  35. W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554–3570 (1993).
  36. L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited