OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 994–1002

Deceleration, trapping, and two-photon cooling of calcium atoms

Reinaldo L. Cavasso Filho, Wictor C. Magno, Daniela A. Manoel, Artemio Scalabrin, Daniel Pereira, and Flavio C. Cruz  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 994-1002 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a system for atomic beam deceleration and magneto-optical trapping of calcium atoms that uses the 1S01P1 transition, in which a single laser is used to trap and slow the atoms. The slower laser beam is focused near the magneto-optical trap’s center, which has a waist size much smaller than the atomic cloud such that its influence on the trapped atoms is greatly reduced. We also investigate the theoretical possibility of cooling by use of a two-photon (4s2)1S0(4s5s)1S0 transition. Excitation near resonance with the 1P1 level results in an equilibrium temperature seven times smaller than the Doppler limit of the 1S01P1 transition.

© 2003 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.4180) Atomic and molecular physics : Multiphoton processes
(020.7010) Atomic and molecular physics : Laser trapping

Reinaldo L. Cavasso Filho, Wictor C. Magno, Daniela A. Manoel, Artemio Scalabrin, Daniel Pereira, and Flavio C. Cruz, "Deceleration, trapping, and two-photon cooling of calcium atoms," J. Opt. Soc. Am. B 20, 994-1002 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987). [CrossRef] [PubMed]
  2. C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999). [CrossRef]
  3. Th. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994). [CrossRef]
  4. T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001). [CrossRef] [PubMed]
  5. F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).
  6. T. Kurosu, G. Zinner, T. Trebst, and F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A 58, R4275–R4278 (1998). [CrossRef]
  7. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001). [CrossRef] [PubMed]
  8. E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of Ca40 to near the photon recoil limit,” Phys. Rev. A 64, 031403–1–031403–4 (2001). [CrossRef]
  9. M. Machholm, P. S. Julienne, and K. A. Suominen, “Calculations of collisions between cold alkaline-earth-metal atoms in a weak laser field,” Phys. Rev. A 64, 033425–033443 (2001). [CrossRef]
  10. G. Woehl, G. D. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999). [CrossRef]
  11. J. A. Neuman, P. Wang, and A. Gallagher, “Robust high-temperature sapphire cell for metal vapors,” Rev. Sci. Instrum. 66, 3021–3023 (1995). [CrossRef]
  12. H. J. Onisto, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled and stabilized allsolid-state Ti:sapphire lasers,” Opt. Eng. 41, 1122–1127 (2002). [CrossRef]
  13. R. J. Napolitano, S. C. Zílio, and V. S. Bagnato, “Adiabatic following conditions for the deceleration of atoms with the Zeeman tuning technique,” Opt. Commun. 80, 110–114 (1990). [CrossRef]
  14. S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999). [CrossRef]
  15. R. L. Cavasso Filho, D. A. Manoel, D. R. Ortega, A. Scalabrin, D. Pereira, and F. C. Cruz, “On-axis calcium magneto-optical trap loaded with a focused decelerating laser,” submitted to Phys. Rev. A.
  16. D. A. Manoel, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled diode laser in alternative extended cavity,” Opt. Commun. 201, 157–163 (2002). [CrossRef]
  17. N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, and G. Vissani, “Measurement of the calcium 1P11D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989). [CrossRef]
  18. A. Derevianko, “Feasibility of cooling and trapping metastable alkaline-earth atoms,” Phys. Rev. Lett. 87, 023002–023005 (2001). [CrossRef]
  19. T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth elements,” Jpn. J. Appl. Phys. 31, 908–912 (1992). [CrossRef]
  20. T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, “Power dependent loss from an ytterbium magneto-optic trap,” Phys. Rev. A 61, 051401–051404 (2000). [CrossRef]
  21. R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Excited-state-population-dependent loss from a calcium magneto-optical trap,” submitted to J. Phys. B.
  22. R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Observing negligible collision trap losses: the case of alkaline-earth metals,” Phys. Rev. A (to be published).
  23. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999). [CrossRef]
  24. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999). [CrossRef]
  25. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989). [CrossRef] [PubMed]
  26. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1996).
  27. R. Loudon, The Quantum Theory of Light (Clarendon, London, 1983).
  28. K. D. Bonin and T. J. McIlrath, “Two-photon electric-dipole selection rules,” J. Opt. Soc. Am. B 1, 52–55 (1984). [CrossRef]
  29. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York, 1999).
  30. J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996). [CrossRef]
  31. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084–2107 (1989). [CrossRef]
  32. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1980).
  33. U. Brinkmann, W. Hartig, H. Telle, and H. Walther, “Isotope selective photoionization of calcium using two-step laser excitation,” Appl. Phys. 5, 109–115 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited