OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 1177–1188

Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis

Shun-Der Wu and Elias N. Glytsis  »View Author Affiliations


JOSA B, Vol. 20, Issue 6, pp. 1177-1188 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001177


View Full Text Article

Acrobat PDF (257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The one-dimensional nonlocal diffusion model for holographic recording in photopolymers proposed by Sheridan et al. [J. Opt. Soc. Am. A 17, 1108 (2002)] is rewritten in dimensionless form by introduction of four dimensionless variables. The dimensionless nonlocal diffusion equation is rigorously solved by use of the finite-difference time-domain method and compared with the four-harmonic-component approximation. In general, the error in the four-harmonic-component approximation increases as RD and σD decrease. The dynamic behavior of holographic grating formations based on DuPont OmniDex613 photopolymers (recorded with UV light of free-space wavelength 363.8 nm) are experimentally studied by use of the real-time diffraction-monitoring technique. By application of rigorous coupled-wave analysis (RCWA), the growth curves of experimentally monitored diffraction efficiencies are converted to the corresponding refractive-index modulations. After the holographic recording reaches steady state, the refractive-index modulation is ∼0.01. Furthermore, the conversion from diffraction efficiencies to refractive-index modulations is also accomplished by use of Kogelnik’s theory (corrected for reflection losses) and compared to the RCWA. As a result, the error in refractive-index modulations estimated by Kogelnik’s theory at steady state is ∼30%. The effects of postbaking conditions on the refractive-index modulation are investigated for the first time to the authors’ knowledge. To accomplish this we baked the holographic grating samples at various temperatures (Tb= 90, 120, 150 °C) for three time periods (tb=1, 1.5,  2 h). In general, it was found that refractive-index modulation can increase from ∼0.01 to ∼0.02 after baking. Finally, we estimated the characteristic parameters including diffusion coefficient and the nonlocal response length by fitting the theoretical model to the experimental data for the recording UV wavelength of 363.8 nm.

© 2003 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.7330) Diffraction and gratings : Volume gratings
(090.2900) Holography : Optical storage materials

Citation
Shun-Der Wu and Elias N. Glytsis, "Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis," J. Opt. Soc. Am. B 20, 1177-1188 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-6-1177

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited