OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 1204–1211

Spectral hole burning induced by reflected amplified spontaneous emission in erbium-doped silica optical fiber pumped at 980 nm

Sebastián Jarabo, Iñigo J. Sola, and José Sáez-Landete  »View Author Affiliations


JOSA B, Vol. 20, Issue 6, pp. 1204-1211 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001204


View Full Text Article

Acrobat PDF (233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We applied an erbrium-doped fiber amplifier characterization method previously reported for 1480-nm pumped amplifiers to a 980-nm amplifier, obtaining absorption and emission coefficients, as well as the dopant concentration in fiber. Gain and fluorescence (amplified spontaneous emission) simulations performed from the obtained features agree well with experimental results. Nevertheless, at certain high-gain circumstances, disagreements appear in the form of spectral hole burning, which can present high magnitudes and whose nature is discussed.

© 2003 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2410) Fiber optics and optical communications : Fibers, erbium
(160.2290) Materials : Fiber materials
(160.5690) Materials : Rare-earth-doped materials
(250.4480) Optoelectronics : Optical amplifiers
(300.6460) Spectroscopy : Spectroscopy, saturation

Citation
Sebastián Jarabo, Iñigo J. Sola, and José Sáez-Landete, "Spectral hole burning induced by reflected amplified spontaneous emission in erbium-doped silica optical fiber pumped at 980 nm," J. Opt. Soc. Am. B 20, 1204-1211 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-6-1204


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Gain cross saturation and spectral hole burning in wideband erbium-doped fiber amplifiers,” Opt. Lett. 16, 1499–1501 (1991).
  2. J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole-burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
  3. I. Joindot and F. Dupré, “Spectral hole-burning in silica-based and in fluoride-based optical fibre amplifiers,” Electron. Lett. 33, 1239–1240 (1997).
  4. E. Rudkevich, D. M. Baney, J. Stimple, D. Derickson, and G. Wang, “Nonresonant spectral-hole-burning in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 11, 542–544 (1999).
  5. M. J. Yadlowsky, “Pump wavelength-dependent spectral-hole-burning in EDFA’s,” J. Lightwave Technol. 17, 1643–1648 (1999).
  6. C.-C. Wang and G. J. Cowle, “Optical gain control of erbium-doped fiber amplifiers with a saturable absorber,” IEEE Photon. Technol. Lett. 12, 483–485 (2000).
  7. P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett. 16, 961–963 (1991).
  8. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
  9. D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
  10. D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Basis for a polarized superfluorescent fiber source with increased efficiency,” Opt. Lett. 21, 1900–1902 (1996).
  11. D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
  12. F. B. Pedersen, J. H. Povlsen, A. Bjarklev, O. Lumholt, and C. Lester, “Noise optimization of an Er-doped superfluorescent fiber source,” Opt. Lett. 18, 1709–1711 (1993).
  13. L. A. Wang and C. D. Chen, “Characteristics comparison of Er-doped double-pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photon. Technol. Lett. 9, 446–448 (1997).
  14. C. D. Su and L. A. Wang, “Effect of adding a long period grating in a double-pass backward Er-doped superfluorescent fiber source,” J. Lightwave Technol. 17, 1896–1903 (1999).
  15. T.-C. Liang, Y.-S. Lin, and Y.-K. Chen, “Comparison of the characteristics of double-pass erbium-doped superfluorescent fiber sources obtained from different flattening techniques,” Appl. Opt. 38, 522–529 (1999).
  16. D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
  17. C. D. Su and L. A. Wang, “Multiwavelength fiber sources based on double-pass superfluorescent fiber sources,” J. Lightwave Technol. 18, 708–714 (2000).
  18. D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17, 1415–1421 (1999).
  19. K. Haroud, E. Rochat, and R. Dändliker, “A broad-band superfluorescent fiber laser using single-mode doped silica fiber combinations,” IEEE J. Quantum Electron. 36, 151–154 (2000).
  20. G. Monnom, B. Dussardier, E. Maurice, A. Saissy, and D. B. Ostrowsky, “Fluorescence and superfluorescence line narrowing and tunability of Nd3+ doped fibers,” IEEE J. Quantum Electron. 30, 2361–2367 (1994).
  21. M. A. Mahdi, P. Poopalan, S. Selvakennedy, N. Ismail, and H. Ahmad, “All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence,” IEEE Photon. Technol. Lett. 11, 1581–1583 (1999).
  22. S. Jarabo and M. A. Rebolledo, “Analytic modeling of erbium-doped fiber amplifiers on the basis of intensity-dependent overlapping factors,” Appl. Opt. 34, 6158–6163 (1995).
  23. S. Jarabo and J. M. Álvarez, “Experimental verification ofanalytic modeling of erbium-doped silica fiber amplifiers pumped at 1480 nm,” Appl. Opt. 35, 4759–4766 (1996).
  24. S. Jarabo and J. M. Álvarez, “Experimental cross sections of erbium-doped silica fibers pumped at 1480 nm,” Appl. Opt. 37, 2288–2295 (1998).
  25. A. Lidgard, J. R. Simpson, and P. C. Becker, “Output saturation characteristics of erbium-doped fiber amplifier pumped at 975 nm,” Appl. Phys. Lett. 56, 2607–2609 (1990).
  26. E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
  27. E. Desurvire, “Analysis of erbium-doped fiber amplifiers pumped in the 4I15/2–4I13/2 band,” IEEE Photon. Technol. Lett. 1, 293–296 (1989).
  28. M. Ohashi, “Design considerations for an Er3+ doped fiber amplifier,” J. Lightwave Technol. 9, 1099–1104 (1991).
  29. B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 1105–1112 (1991).
  30. M. A. Rebolledo and S. Jarabo, “Erbium-doped silica fiber modeling with overlapping factors,” Appl. Opt. 33, 5585–5593 (1994).
  31. W. Demtröder, Laser Spectroscopy. Basic Concepts and Instrumentation, 2nd ed. (Springer, New York, 1998), pp. 436–448.
  32. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 1171–1212.
  33. M. Stübner, E. Schneider, and J. Friedrich, “Hole-burning Stark-effect studies on aromatic aminoacids: I. Phenylalanine in a glycerol-water glass,” Phys. Chem. Chem. Phys. 3, 5369–5372 (2001).
  34. E. Desurvire and J. R. Simpson, “Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers,” Opt. Lett. 15, 547–549 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited