OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 1212–1219

Ho:Ho upconversion: applications to Ho lasers

Norman P. Barnes, Brian M. Walsh, and Elizabeth D. Filer  »View Author Affiliations


JOSA B, Vol. 20, Issue 6, pp. 1212-1219 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001212


View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ho:Ho upconversion rates are predicted with a quantum-mechanical model and measured with a Q-switched Co:MgF2 laser to directly excite the Ho 5I7 manifold. If Ho:Ho upconversion is low compared with spontaneous decay, Q-switched, Ho-only lasers can store energy efficiently over long time intervals. In this case, Ho-only lasers, when pumped by long-pulse-length Tm-only lasers, have great potential. Ho-only lasers have proven to be efficient, and, when long pump pulses are used, fewer laser diodes are required. To assess the Ho laser potential, Ho:Ho upconversion parameters are calculated and measured for several Ho laser materials including Ho:YAG and Ho:YLF. The effects of both nonuniform pump energy deposition and diffusion of the excited Ho distribution are analyzed.

© 2003 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3580) Lasers and laser optics : Lasers, solid-state

Citation
Norman P. Barnes, Brian M. Walsh, and Elizabeth D. Filer, "Ho:Ho upconversion: applications to Ho lasers," J. Opt. Soc. Am. B 20, 1212-1219 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-6-1212


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998). [CrossRef]
  2. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992). [CrossRef]
  3. N. P. Barnes, W. J. Rodriguez, and B. M. Walsh, “Ho:Tm:YLF laser amplifier performance,” J. Opt. Soc. Am. B 13, 2872–2882 (1996). [CrossRef]
  4. U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, and E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of 1998 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 194–196.
  5. C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9 μm diode lasers,” IEEE J. Quantum Electron. 31, 1603–1605 (1995). [CrossRef]
  6. R. C. Stoneman and L. Esterowitz, “Intracavity-pumped 2.09-μm Ho:YAG laser,” Opt. Lett. 17, 736–738 (1992). [CrossRef] [PubMed]
  7. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21, 728–730 (1996). [CrossRef] [PubMed]
  8. T. J. Kane and T. S. Kubo, “Diode-pumped single-frequency and Q-switched lasers using Tm:YAG and Ho:Tm:YAG,” in Advanced Solid-State Lasers, H. P. Jenssen and G. Dube, eds., Vol. 6 of 1990 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 133–135.
  9. R. C. Stoneman, L. Esterowitz, and G. Rosenblatt, “Diode-pumped Q-switched room-temperature 2-μm Tm3+:YAG laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper TUE1.
  10. R. C. Stoneman and L. Esterowitz, “Efficient broadly tunable laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990). [CrossRef] [PubMed]
  11. N. P. Barnes, M. G. Jani, and R. L. Hutcheson, “Diode-pumped room-temperature, Tm:LuAG laser,” Appl. Opt. 34, 4290–4294 (1995). [CrossRef] [PubMed]
  12. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG CW diode-pumped solid-state laser,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of 1997 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 307–309.
  13. P. A. Ketteridge, P. A. Budni, M. Knights, and E. Chicklis, “An all solid-state 7 watt, CW, tunable, Tm:YLF laser,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of 1997 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 197–201.
  14. J. D. Kmetec, T. S. Kubo, and T. J. Kane, “Laser performance of diode-pumped thulium-doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 crystals,” Opt. Lett. 19, 186–188 (1994). [CrossRef]
  15. L. Fornasiero, N. Berner, B. M. Dicks, E. Mix, V. Peters, K. Peterman, and G. Huber, “Broadly tunable laser emission from Tm:Y2O3 and Tm:Sc2O3 at 2.0 μm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of 1999 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 450–453.
  16. R. A. Hayward, W. A. Clarkson, P. W. Turner, N. P. Barnes, J. Nilsson, A. B. Grudinen, and D. C. Hanna, “High power double-clad Tm–doped fibre laser with >12 W single-mode output at 2.0 μm,” in Conference on Lasers and Electro-Optics (CLEO), Postconference Digest, Vol. 39 of 2000 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper CFH2.
  17. T. Forster, “Experimentalle und theoretische untersuchung des zwischenmolerkularen ubergangs von elektronenregungsenergie,” Z. Naturforsch. A 4, 321–327 (1947).
  18. D. L. Dexter, “A theory of sensitizer luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953). [CrossRef]
  19. N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm laser. I: Modeling,” IEEE J. Quantum Electron. 32, 92–103 (1996). [CrossRef]
  20. C. J. Lee, G. Han, and N. P. Barnes, “Ho:Tm lasers. II: Experiments,” IEEE J. Quantum Electron. 32, 104–111 (1996). [CrossRef]
  21. T. T. Basiev, Yu V. Orlowskii, K. K. Pukhov, V. B. Sigachev, M. E. Doroshenko, and I. N. Borob’ev, “Multiphonon relaxation in the rare earth ions doped laser crystal,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 575–581.
  22. L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare earth ions in crystals,” Phys. Rev. 174, 429–438 (1968). [CrossRef]
  23. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000). [CrossRef]
  24. S. R. Bowman, J. E. Tucker, and S. Kirkpartick, “Progress in the modeling of migration-limited energy transfer in laser materials,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of 1998 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 519–523.
  25. N. P. Barnes, “A review of tuning and performance of Ho lasers,” in Recent Res. Devel. Appl. Opt. 1, 47–58 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited