OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 1247–1268

Model of thermal wave-front distortion in interferometric gravitational- wave detectors. I. Thermal focusing

Raymond G. Beausoleil, Eric K. Gustafson, Martin M. Fejer, Erika D’Ambrosio, William Kells, and Jordan Camp  »View Author Affiliations


JOSA B, Vol. 20, Issue 6, pp. 1247-1268 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001247


View Full Text Article

Enhanced HTML    Acrobat PDF (1602 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a steady-state analytical and numerical model of the optical response of power-recycled Fabry–Perot Michelson laser gravitational-wave detectors to nonlinear thermal focusing in optical substrates. We assume that the thermal distortions are small enough that we can represent all intracavity fields as linear combinations of basis functions derived from the eigenmodes of a Fabry–Perot arm cavity. We have included the effects of power absorption in optical substrates and coatings, mismatches between laser wave-front and mirror surface curvatures, and aperture diffraction. We demonstrate a detailed numerical example of this model using the matlab program Melody for the initial Laser Interferometer Gravitational Wave Observatory detector.

© 2003 Optical Society of America

OCIS Codes
(000.2780) General : Gravity
(000.4430) General : Numerical approximation and analysis
(140.4780) Lasers and laser optics : Optical resonators
(190.4870) Nonlinear optics : Photothermal effects
(350.1270) Other areas of optics : Astronomy and astrophysics
(350.6830) Other areas of optics : Thermal lensing

Citation
Raymond G. Beausoleil, Eric K. Gustafson, Martin M. Fejer, Erika D'Ambrosio, William Kells, and Jordan Camp, "Model of thermal wave-front distortion in interferometric gravitational-wave detectors. I. Thermal focusing," J. Opt. Soc. Am. B 20, 1247-1268 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-6-1247


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Will, Theory and Experiment in Gravitational Physics, revised ed. (Cambridge University, Cambridge, England, 1993).
  2. D. G. Blair, ed., The Detection of Gravitational Waves (Cambridge University, Cambridge, England, 1993).
  3. P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore, 1994).
  4. A. Abramovici, W. Althouse, R. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  5. A. Abramovici, W. Althouse, J. Camp, J. A. Giaime, A. Gillespie, S. Kawamura, A. Kuhnert, T. Lyons, F. J. Raab, R. L. Savage Jr., D. Shoemaker, L. Sievers, R. Spero, R. Vogt, R. Weiss, S. Whitcomb, and M. Zucker, “Improved sensitivity in a gravitational wave interferometer and implications for LIGO,” Phys. Lett. A 218, 157–163 (1996). [CrossRef]
  6. A. Giazotto, “The VIRGO experiment: status of the art,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, and F. Ronga, eds. (World Scientific, Singapore, 1995), p. 86.
  7. K. Danzmann, “GEO 600—a 600-m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, and F. Ronga, eds. (World Scientific, Singapore, 1995), p. 100.
  8. K. Tsubono, “300-m laser interferometric gravitational wave detector (TAMA300) in Japan,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, and F. Ronga, eds. (World Scientific, Singapore, 1995), p. 112.
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  10. P. Fritschel, R. Bork, G. Lez, N. Mavalvala, D. Ouimette, H. Rong, D. Sigg, and M. Zucker, “Readout and control of a power-recycled interferometric gravitational-wave antenna,” Appl. Opt. 40, 4988–4998 (2001). [CrossRef]
  11. B. J. Meers and K. A. Strain, “Wave-front distortion in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 43, 3117–3130 (1991). [CrossRef]
  12. W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991). [CrossRef] [PubMed]
  13. K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, “Thermal lensing in recycling interferometric gravitational wave detectors,” Phys. Lett. A 194, 124–132 (1994). [CrossRef]
  14. D. McClelland, J. Camp, J. Mason, W. Kells, and S. Whitcomb, “Arm cavity resonant sideband control for laser interferometric gravitational wave detectors,” Opt. Lett. 24, 1014–1016 (1999). [CrossRef]
  15. J.-Y. Vinet, P. Hello, C. N. Man, and A. Brillet, “A high-accuracy method for the simulation of non-ideal optical cavities,” J. Phys. I 2, 1287–1303 (1992).
  16. P. Saha, “Fast estimation of transverse fields in high-finesse optical cavities,” J. Opt. Soc. Am. A 14, 2195–2202 (1997). [CrossRef]
  17. B. Bochner, “Modeling the performance of interferometric gravitational-wave detectors with realistically imperfect optics,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1998).
  18. P. Hello and J.-Y. Vinet, “Analytical models of thermal ab-errations in massive mirrors heated by high power laser beams,” J. Phys. (Paris) 51, 1267–1282 (1990). [CrossRef]
  19. D. Z. Anderson, “Alignment of resonant optical cavities,” Appl. Opt. 23, 2944–2949 (1984). [CrossRef] [PubMed]
  20. E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, “Automatic alignment of optical interferometers,” Appl. Opt. 33, 5041–5049 (1994). [CrossRef] [PubMed]
  21. Y. Hefetz, N. Mavalvala, and D. Sigg, “Principles of calculating alignment signals in complex resonant optical interferometers,” J. Opt. Soc. Am. B 107, 1597–1605 (1997). [CrossRef]
  22. R. G. Beausoleil and D. Sigg, “Spatiotemporal model of the LIGO interferometer,” J. Opt. Soc. Am. A 16, 2990–3002 (1999). [CrossRef]
  23. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986); errata URL: http://www-ee.stanford.edu/~ siegman/lasers_book_errata.txt.
  24. K. E. Oughstun, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. 24, pp. 165–387.
  25. A. Kostenbauder, Y. Sun, and A. E. Siegman, “Eigenmode expansions using biorthogonal functions: complex-valued Hermite–Gaussians,” J. Opt. Soc. Am. A 14, 1780–1790 (1997). [CrossRef]
  26. See http://www.mathworks.com/products/matlab/.
  27. The Melody/MATLAB software package can be downloaded from the LIGO Software Tools for Advanced Interferometer Configurations Internet web site at the URL http://www.phys.ufl.edu/LIGO/LIGO/STAIC.html.
  28. See http://www.ligo.caltech.edu/gari/COCAsBuilt.htm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited