## Transverse modulational instability of (2+1)-dimensional cnoidal waves in media with cubic nonlinearity

JOSA B, Vol. 20, Issue 6, pp. 1273-1284 (2003)

http://dx.doi.org/10.1364/JOSAB.20.001273

Acrobat PDF (725 KB)

### Abstract

We consider transverse modulational instability of (2+1)-dimensional cnoidal waves of cn, dn, and sn, types that are periodic in one direction and are uniform in the other direction. The new method of stability analysis of periodic waves presented here is based on the construction of a translation matrix for a perturbation vector and on the evolution of the eigenvalues of the matrix with changes in modulation frequency and Jacobi parameter that define the degree of energy localization of the corresponding cnoidal waves. We show that the dn wave is subject to the influence of both neck and snake instabilities, the cn wave is affected by neck instability, and the sn wave suffers from snake instability in (2+1) dimensions.

© 2003 Optical Society of America

**OCIS Codes**

(190.0190) Nonlinear optics : Nonlinear optics

(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

(190.5940) Nonlinear optics : Self-action effects

**Citation**

Yaroslav V. Kartashov, Victor A. Aleshkevich, Victor A. Vysloukh, Alexey A. Egorov, and Anna S. Zelenina, "Transverse modulational instability of (2+1)-dimensional cnoidal waves in media with cubic nonlinearity," J. Opt. Soc. Am. B **20**, 1273-1284 (2003)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-6-1273

Sort: Year | Journal | Reset

### References

- A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Propagation of dark stripe beam in nonlinear media: snake instability and creation of optical vortices,” Phys. Rev. Lett. 76, 2262–2265 (1996).
- A. V. Mamaev, M. Saffman, D. Z. Anderson, and A. A. Zozulya, “Propagation of light beams in anisotropic nonlinear media: from symmetry breaking to spatial turbulence,” Phys. Rev. A 54, 870–879 (1996).
- V. Tikhonenko, J. Christou, B. Luther-Davies, and Yu. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).
- R. A. Fuerst, D.-M. Baboiu, B. Lawrence, W. E. Torruellas, G. I. Stegeman, S. Trillo, and S. Wabnitz, “Spatial modulation instability and multisolitonlike generation in a quadratically nonlinear optical media,” Phys. Rev. Lett. 78, 2756–2759 (1997).
- R. A. Fuerst, B. L. Lawrence, W. E. Torruellas, and G. I. Stegeman, “Beam reshaping by use of spatial solitons in the quadratic nonlinear medium KTP,” Opt. Lett. 22, 19–21 (1997).
- A. De Rossi, S. Trillo, A. V. Buryak, and Yu. S. Kivshar, “Snake instability of one-dimensional parametric spatial solitons,” Opt. Lett. 22, 868–870 (1997).
- A. De Rossi, S. Trillo, A. V. Buryak, and Yu. S. Kivshar, “Symmetry-breaking instabilities of parametric spatial solitons,” Phys. Rev. E 56, R4959–R4962 (1997).
- V. Tikhonenko, J. Christou, and B. Luther-Davies, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995).
- D. V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J. P. Torres, and C. Cojocaru, “Observation of azimuthal modulational instability and formation of patterns of optical solitons in a quadratic nonlinear crystal,” Opt. Lett. 23, 1444–1446 (1998).
- S. Minardi, G. Molina-Terriza, P. Di Trapani, J. P. Torres, and L. Torner, “Soliton algebra by vortex beam splitting,” Opt. Lett. 26, 1004–1006 (2001).
- L. M. Degtyarev, V. E. Zakharov, and L. I. Rudakov, “Two examples of Langmuir wave collapse,” Sov. Phys. JETP 41, 57–61 (1975).
- E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” Sov. Phys. JETP 67, 1583–1588 (1988).
- G. S. McDonald, K. S. Syed, and W. J. Firth, “Dark spatial soliton break-up in the transverse plane,” Opt. Commun. 95, 281–288 (1993).
- C. T. Law and G. A. Swartzlander, “Optical vortex solitons and the stability of dark soliton stripes,” Opt. Lett. 18, 586–588 (1993).
- D. E. Pelinovsky, Yu. A. Stepanyants, and Yu. S. Kivshar, “Self-focusing of plane dark solitons in nonlinear defocusing media,” Phys. Rev. E 51, 5016–5026 (1995).
- K. Rypdal and J. J. Rasmussen, “Stability of solitary structures in the nonlinear Schrödinger equation,” Phys. Scr. 40, 192–201 (1989).
- E. Infeld and R. Rowlands, Nonlinear Waves. Solitons and Chaos (Cambridge U. Press, Cambridge, 1990).
- E. A. Kuznetsov, S. L. Musher, and A. V. Shafarenko, “Collapse of acoustic waves in media with positive dispersion,” JETP Lett. 37, 241–245 (1983).
- Yu. S. Kivshar and D. E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves,” Phys. Rep. 331, 117–195 (2000).
- D. V. Skryabin and W. J. Firth, “Modulational instability of bright solitary waves in incoherently coupled nonlinear Schrödinger equations,” Phys. Rev. E 60, 1019–1029 (1999).
- E. M. Wright, B. L. Lawrence, W. Torruellas, and G. Stegeman, “Stable self-trapping and ring formation in polydiacetylene para-toluene sulfonate,” Opt. Lett. 20, 2481–2483 (1995).
- C. Josserand and S. Rica, “Coalescence and droplets in the subcritical nonlinear Schrödinger equation,” Phys. Rev. Lett. 78, 1215–1218 (1997).
- E. Infeld and T. Lenkowska-Czerwinska, “Analysis of stability of light beams in nonlinear photorefractive media,” Phys. Rev. E 55, 6101–6106 (1997).
- D. V. Skryabin and W. J. Firth, “Generation and stability of optical bullets in quadratic nonlinear media,” Opt. Commun. 148, 79–84 (1998).
- A. V. Buryak and Yu. S. Kivshar, “Solitons due to second harmonic generation,” Phys. Lett. A 197, 407–412 (1995).
- D.-M. Baboiu and G. I. Stegeman, “Modulational instability of a strip beam in a bulk type I quadratic medium,” Opt. Lett. 23, 31–33 (1998).
- D. V. Skryabin and W. J. Firth, “Modulational instability of solitary waves in nondegenerate three-wave mixing: the role of phase symmetries,” Phys. Rev. Lett. 81, 3379–3382 (1998).
- A. B. Aceves, C. De Angelis, G. G. Luther, and A. M. Rubenchik, “Modulational instability of continuous waves and one-dimensional temporal solitons in fiber arrays,” Opt. Lett. 19, 1186–1188 (1994).
- A. B. Aceves, G. G. Luther, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, “Energy localization in nonlinear fiber arrays: collapse-effect compressor,” Phys. Rev. Lett. 75, 73–76 (1995).
- V. M. Petnikova, V. V. Shuvalov, and V. A. Vysloukh, “Multicomponent photorefractive cnoidal waves: stability, localization, and soliton asymptotics,” Phys. Rev. E 60, 1–10 (1999).
- F. T. Hioe, “Solitary waves for N coupled nonlinear Schrödinger equations,” Phys. Rev. Lett. 82, 1152–1155 (1999).
- L. D. Carr, C. W. Clark, and W. P. Reinhardt, “Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity,” Phys. Rev. A 62, 063610 (2000).
- L. D. Carr, C. W. Clark, and W. P. Reinhardt, “Stationary solutions of the one-dimensional nonlinear Schrödinger equation. II. Case of attractive nonlinearity,” Phys. Rev. A 62, 063611 (2000).
- V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Self-bending of cnoidal waves in photorefractive medium with drift and diffusion nonlinearity,” Opt. Commun. 173, 277–284 (2000).
- V. A. Aleshkevich, V. A. Vysloukh, and Y. V. Kartashov, “Propagation of cnoidal waves in a medium with a saturable nonlinear response,” Quantum Electron. 31, 257–262 (2001).
- N. Korneev, A. Apolinar-Iribe, V. A. Vysloukh, and M. A. Basurto-Pensado, “Self-compression of 1+1D cnoidal wave in photorefractive BTO crystal: an experimental evidence,” Opt. Commun. 197, 209–215 (2001).
- V. Aleshkevich, Y. Kartashov, and V. Vysloukh, “Self-frequency shift of cnoidal waves in a medium with delayed nonlinear response,” J. Opt. Soc. Am. B 18, 1127–1136 (2001).
- V. Aleshkevich, Y. Kartashov, and V. Vysloukh, “Cnoidal waves compression by means of multisoliton effect,” Opt. Commun. 185, 305–314 (2000).
- V. Aleshkevich, Y. Kartashov, and V. Vysloukh, “On the possibility of suppression of the self-frequency shift of the cnoidal waves in the medium with delayed nonlinear response by bandwidth-limited amplification,” Opt. Commun. 190, 373–383 (2001).
- V. A. Aleshkevich, V. A. Vysloukh, and Y. V. Kartashov, “Stimulated Raman scattering of cnoidal waves,” Quantum Electron. 31, 327–332 (2001).
- L. D. Carr, J. N. Kutz, W. P. Reinhardt, “Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose–Einstein condensate,” Phys. Rev. E 63, 066604 (2001).
- L. Berge, T. J. Alexander, and Y. S. Kivshar, “Stability criterion for attractive Bose–Einstein condensates,” Phys. Rev. A 62, 023607 (2000).
- Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications—the inverse scattering transform,” Phys. Rep. 298, 81–197 (1998).
- A. Ankiewicz, W. Krolikowski, and N. N. Akhmediev, “Partially coherent solitons of variable shape in a slow Kerr-like medium: exact solutions,” Phys. Rev. E 59, 6079–6087 (1999).
- E. Infeld, “Self-focusing of waves on the surface of deep water,” JETP Lett. 32, 87–89 (1980).
- V. P. Pavlenko and V. I. Petviashvili, “Stability and kinetic effects of a standing Langmuir wave,” JETP Lett. 26, 200–202 (1977).
- V. P. Kudashev and A. B. Mikhailovsky, “Instability of periodic waves described by the nonlinear Schrödinger equation,” Sov. Phys. JETP 63, 972–979 (1986).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.