Study of transient dynamics in Cr:LiSrGaF_{6} system with intrinsic optical bistability
JOSA B, Vol. 20, Issue 6, pp. 1295-1303 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001295
Acrobat PDF (218 KB)
Abstract
The transient dynamics and the kinetics of switching between two stable states in Cr:LiSrGaF_{6} laser crystal, a material with thermally induced intrinsic optical bistability, have been studied. It has been shown that the characteristic switching time τ_{switch} can be shorter than that determined by the heat transfer in a linear regime. In the quasi-steady-state regime, the rate of switching (τ_{switch}^{−1}) in the system studied is proportional to the square root of the area of the steady-state hysteresis loop. The switching time τ_{switch} can be controlled by changing system parameters, such as the temperature of the heat sink, the heat sinking efficiency, the rate of the pumping power increase, etc. When the pumping power is continuously changed at the rate R, the increment in the switching rate Δτ_{switch}^{−1} is proportional to R^{2/3}.
© 2003 Optical Society of America
OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.1450) Nonlinear optics : Bistability
(190.4870) Nonlinear optics : Photothermal effects
Citation
M. Vondrova, B. D. Lucas, and M. A. Noginov, "Study of transient dynamics in Cr:LiSrGaF_{6} system with intrinsic optical bistability," J. Opt. Soc. Am. B 20, 1295-1303 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-6-1295
Sort: Year | Journal | Reset
References
- M. A. Noginov, M. Vondrova, and B. D. Lucas, “Thermally induced optical bistability in Cr-doped Colquiriite crystals,” Phys. Rev. B 65, 035112 (2002).
- C. M. Bowden and C. C. Sung, “First- and second-order phase transitions in the Dicke model: relation to optical bistability,” Phys. Rev. A 19, 2392–2401 (1979).
- F. A. Hopf and C. M. Bowden, “Heuristic stochastic model of mirrorless optical bistability,” Phys. Rev. A 32, 268–275 (1985).
- Y. Ben-Aryeh, C. M. Bowden, and J. C. Englund, “Intrinsic optical bistability in collections of spatially distributed two-level atoms,” Phys. Rev. A 34, pp. 3917–3926 (1986).
- M. E. Crenshaw and C. M. Bowden, “Local-field effects in a dense collection of two-level atoms embedded in a dielectric medium: Intrinsic optical bistability enhancement and local field correction effects,” Phys. Rev. A 53, 1139–1142 (1996).
- M. E. Crenshaw, K. U. Sullivan, and C. M. Bowden, “Local field effects in multicomponent media,” Opt. Express 1, 153–159 (1997).
- M. P. Hehlen, H. U. Güdel, Q. Shu, J. Rai, and S. C. Rand, “Cooperative bistability in dense, excited atomic systems,” Phys. Rev. Lett. 73, 1103–1106 (1994).
- M. P. Hehlen, H. U. Güdel, Q. Shu, and S. C. Rand, “Cooperative optical bistability in the dimer system Cs_{3}Y_{2}Br_{9}:10%Yb,” J. Chem. Phys. 104, 1232–1244 (1996).
- S. R. Lüthi, M. P. Hehlen, T. Reidener, and H. U. Güdel, “Excited-state dynamics and optical bistability in the dimer system Cs_{3}Lu_{2}Br_{9}:Yb^{3+},” J. Lumin. 77, 447–450 (1998).
- M. P. Hehlen, A. Kuditcher, S. C. Rand, and S. R. Lüthi, “Site-selective, intrinsically bistable luminescence of Yb^{3+} in pairs in CsCdBr_{3},” Phys. Rev. Lett. 82, 3050–3053 (1999).
- A. Kuditcher, M. P. Hehlen, C. M. Florea, K. W. Winick, and S. C. Rand, “Intrinsic bistability of luminescence and stimulated emission in Yb- and Tm-doped glass,” Phys. Rev. Lett. 84, 1898–1901 (2000).
- D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, “The role of laser heating in the intrinsic optical bistability of Yb^{3+}-doped bromide lattices,” J. Chem. Phys. 104, 11045–11057 (2000).
- M. E. Crenshaw, M. Scalora, and C. M. Bowden, “Ultrafast intrinsic optical switch in a dense medium of two-level atoms,” Phys. Rev. Lett. 68, 911–914 (1992).
- P. Jung, G. Gray, R. Roy, and P. Mandel, “Scaling law for dynamical hysteresis,” Phys. Rev. Lett. 65, 1873–1876 (1990).
- N. E. Fettouhi, B. Segard, and J. Zemmouti, “Scaling of hysteresis in a multidimensional all-optical bistable system,” Eur. Phys. J. D 6, 425–429 (1999).
- G. H. Goldsztein, F. Broner, and S. H. Strogatz, “Dynamical hysteresis without static hysteresis: scaling laws and asymptotic expansions,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 57, 1163–1187 (1997).
- A. Hohl, H. J. C. van der Linden, and R. Roy, “Scaling laws for dynamical hysteresis in a multidimensional laser system,” Phys. Rev. Lett. 74, 2220–2223 (1995).
- L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the Laser Properties of Cr^{3+}:LiSrGaF_{6},” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
- I. T. Sorokina, E. Sorokin, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Physics B 65, 245–254 (1997).
- M. Stadler, B. H. T. Chai, and M. Bass, “Crystal growth and spectroscopy of Cr:LiBaAlF_{6},” in Advanced Solid-State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington D.C., 1991), pp. 18–20.
- M. A. Noginov, V. G. Ostroumov, I. A. Shcherbakov, V. A. Smirnov, and D. A. Zubenko, “Interaction of excited Cr^{3+} ions in laser crystals,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington D.C., 1991), pp. 21–24.
- The numerical values of C and ρ corresponded to those for Cr:LiSrAlF_{6}, a material whose properties are close to those of Cr:LiSrGaF_{6}. The values for Cr:LiSrAlF_{6} were found in the paper: S. A. Payne, L. K. Smith, J. R. Beach, and B. H. T. Chai, “Properties of Cr:LiSrAlF_{6} crystals for laser operation,” Applied Optics 33, 5526–5536 (1994).
- M. A. Noginov, B. D. Lucas, and M. Vondrova, “Optical bistability in Cr:LiSrGaF_{6} laser,” J. Opt. Soc. Am. B 19, 1999–2006 (2002).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.