OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 1326–1333

Thermal-stress effects on the temperature sensitivity of optical waveguides

M. Huang and X. Yan  »View Author Affiliations


JOSA B, Vol. 20, Issue 6, pp. 1326-1333 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001326


View Full Text Article

Acrobat PDF (332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Temperature sensitivity of optical parameters is an important issue in developing optoelectronic devices. It can dramatically affect the optical performance of interferometric devices, such as arrayed waveguides. Applying thermal stress is a promising method to control temperature effects. In this paper, a general method to study thermal-stress effects on the temperature sensitivity of the effective refractive index is developed. The temperature sensitivities of the effective refractive index of planar waveguides and channel waveguides are obtained theoretically. The thermal-stress effects on the central-wavelength shift are discussed. It is shown that the temperature sensitivity of optical waveguides could be controlled by thermal stresses.

© 2003 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar
(350.5340) Other areas of optics : Photothermal effects

Citation
M. Huang and X. Yan, "Thermal-stress effects on the temperature sensitivity of optical waveguides," J. Opt. Soc. Am. B 20, 1326-1333 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-6-1326


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 μm wavelength using a silica based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
  2. N. Keil, H. H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579–580 (2001).
  3. A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multi/demultiplexers with new low loss groove design,” Electron. Lett. 36, 318–319 (2000).
  4. Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
  5. N. Ooba, Y. Hibino, Y. Inoue, and A. Sugita, “Athermal silica-based arrayed-waveguide grating multiplexer using bimetal plate temperature compensator,” Electron. Lett. 36, 1800–1801 (2000).
  6. D. A. Cohen, M. E. Heimbuch, and L. A. Coldren, “Reduced temperature sensitivity of the wavelength of a diode laser in a stress-engineered hydrostatic package,” Appl. Phys. Lett. 69, 455–457 (1996).
  7. D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGasP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77, 2629–2631 (2000).
  8. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40, 1615–1632 (2003).
  9. W. L. Wolfe, “Properties of optical materials,” in Handbook of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, New York, 1978), Chap. 7.
  10. T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925 K,” Phys. Rev. B 62, 16578–16581 (2000).
  11. S. S. Ballard, J. S. Browder, and J. F. Ebersole, “Refractive index of special crystals and certain glasses,” in American Institute of Physics Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1972), Chap. 6.
  12. F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett. 77, 1614–1616 (2000).
  13. F. G. Della Corte, M. Esposito Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
  14. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, New York, 1992).
  15. J. Sapriel, Acousto-Optics (Wiley, New York, 1976).
  16. P. Hlídek, J. Bok, J. Franc, and R. Grill, “Refractive index of CdTe: spectral and temperature dependence,” J. Appl. Phys. 90, 1672–1674 (2001).
  17. U. Tisch, B. Meyler, O. Katz, E. Finlman, and J. Salzman, “Dependence of the refractive index of AlxGa1−xN on temperature and composition at elevated temperatures,” J. Appl. Phys. 89, 2676–2685 (2001).
  18. J. T. Boyd, “Photonic integrated circuits,” in Photonic Devices and Systems, R. G. Hunsperger, eds. (Marcel Dekker, New York, 1994), pp. 313–375.
  19. D. Lee, Electromagnetic Principles of Integrated Optics (Wiley, New York, 1986).
  20. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  21. X. Yan and M. Huang, “A thermal design of arrayed waveguide gratings,” presented at 2002 ASME International Mechanical Engineering Congress, New Orleans, La., November 2002.
  22. X. Yan, “Underfill selection and its impact on the reliability of flip chip assembles,” presented at the Delphi Automotive Systems Analytical Design Forum, Kokomo, Indiana, March 1999.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited