OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 1334–1341

Band structure of absorptive two-dimensional photonic crystals

Han van der Lem, Adriaan Tip, and Alexander Moroz  »View Author Affiliations

JOSA B, Vol. 20, Issue 6, pp. 1334-1341 (2003)

View Full Text Article

Acrobat PDF (236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The band structure for an absorptive two-dimensional photonic crystal made from cylinders consisting of a Drude material is calculated. Absorption causes the spectrum to become complex and form islands in the negative complex half-plane. The boundaries of these islands are not always formed by the eigenvalues calculated for Bloch vectors on the characteristic path, and we find a hole in the spectrum. For realistic parameter values, the real part of the spectrum is hardly influenced by absorption, typically less than 0.25%. The employed method uses a Korringa–Kohn–Rostoker procedure together with analytical continuation. This results in an efficient approach that allows these band-structure calculations to be done on a Pentium III personal computer.

© 2003 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(290.4210) Scattering : Multiple scattering

Han van der Lem, Adriaan Tip, and Alexander Moroz, "Band structure of absorptive two-dimensional photonic crystals," J. Opt. Soc. Am. B 20, 1334-1341 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. V. P. Bykov, “Spontaneous emission in a periodic structure,” Sov. Phys. JETP 35, 269–273 (1972).
  2. V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Sov. J. Quantum Electron. 4, 861–871 (1975).
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  4. C. M. Soukoulis, ed., Photonic Crystals and Localization in the 21st Century, NATO ASI Ser. Ser. C 563 (2001).
  5. A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999).
  6. A. Moroz, “Photonic crystals of coated metallic spheres,” Europhys. Lett. 50, 466–472 (2000).
  7. A. Moroz, “Metallo-dielectric diamond and zinc-blende photonic crystals,” Phys. Rev. B 66, 115109 (2002).
  8. H. van der Lem and A. Moroz, “Towards two-dimensional complete photonic bandgap structures below infrared wavelengths,” J. Opt. A: Pure Appl. Opt. 2, 395–399 (2000).
  9. A. Tip, “Linear absorptive dielectrics,” Phys. Rev. A 57, 4818–4841 (1998).
  10. A. Tip, A. Moroz, and J. M. Combes, “Band structure for absorptive photonic crystals,” J. Phys. A 33, 6223–6252 (2000).
  11. A. M. Ozorio de Almeida, “Real-space methods for interpreting electron micrographs in cross-grating orientations. I. exact wave formulation,” Acta Crystallogr. Sect. A 31, 435–442 (1975).
  12. J. S. Faulkner, “Multiple-scattering calculations in two dimensions,” Phys. Rev. B 38, 1686–1694 (1988).
  13. A. Moroz, “Density-of-states calculations and multiple-scattering theory for photons,” Phys. Rev. B 51, 2068–2081 (1995).
  14. V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
  15. B. Gralak, FOM-Instituut voor Atoom en Molecuulfysica, Amsterdam, The Netherlands (personal communication, 2002).
  16. J. Ziman, “The T matrix, the K matrix, d bands and l-dependent pseudo-potentials in the theory of metals,” Proc. Phys. Soc. London 86, 337–353 (1965).
  17. A. Moroz and A. Tip, “Resonance-induced effects in photonic crystals,” J. Phys. Condens. Matter 11, 2503–2512 (1999).
  18. W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Dover, New York, 1945).
  19. P. S. J. Russel, “Photonic band gaps,” Phys. World 37, 37–41 (1992).
  20. K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116 (2001).
  21. J. Korringa, “On the calculation of the energy of a Bloch wave in a metal,” Physica (Utrecht) 13, 392–400 (1947).
  22. W. Kohn and N. Rostoker, “Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium,” Phys. Rev. 94, 1111–1120 (1954).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited