OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 1346–1355

Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing fiber

P. K. A. Wai and Wen-hua Cao  »View Author Affiliations


JOSA B, Vol. 20, Issue 6, pp. 1346-1355 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001346


View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel technique to generate ultrashort fundamental solitons is proposed and demonstrated numerically. The technique utilizes both the multisoliton pulse-compression effect and the switching characteristics of a nonlinear optical loop mirror constructed from dispersion-decreasing fiber. We show that, in contrast to the conventional soliton-effect pulse compression in which compressed pulses are always accompanied by broad pedestals, the proposed technique can completely suppress pulse pedestals, and the compressed pulses propagate like fundamental solitons. Unlike the adiabatic-compression technique based on dispersion-decreasing fibers that are limited to input pulse widths <5 ps, the proposed technique does not require the adiabatic condition and therefore can be used to compress long pulses by use of reasonable fiber lengths. Furthermore, the scheme is more tolerant of initial frequency chirps than the adiabatic-compression technique, and it is shown that positive chirps are beneficial to ultrashort soliton generation. The influences of higher-order effects such as Raman self-scattering and third-order dispersion on soliton generation are also investigated, and it is found that Raman self-scattering can significantly enhance pulse compression under certain conditions.

© 2003 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping

Citation
P. K. A. Wai and Wen-hua Cao, "Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing fiber," J. Opt. Soc. Am. B 20, 1346-1355 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-6-1346


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).
  2. M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000). [CrossRef]
  3. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980). [CrossRef]
  4. K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique,” IEEE J. Sel. Top. Quantum Electron. 1, 592–600 (1995). [CrossRef]
  5. K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995). [CrossRef]
  6. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991). [CrossRef]
  7. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993). [CrossRef] [PubMed]
  8. M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997). [CrossRef]
  9. K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32 nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photon. Technol. Lett. 11, 319–321 (1999). [CrossRef]
  10. K. T. Chan and W. H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000). [CrossRef]
  11. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7, 512–514 (1982). [CrossRef] [PubMed]
  12. B. Nikolaus, D. Grischkowsky, and A. C. Balant, “Optical pulse reshaping based on the nonlinear birefringence of single-mode optical fibers,” Opt. Lett. 8, 189–191 (1983). [CrossRef] [PubMed]
  13. R. Yatsu, K. Taira, and M. Tsuchiya, “High-quality sub-100-fs optical pulse generation by fiber-optic soliton compression of gain-switched distributed-feedback laser-diode pulses in conjunction with nonlinear optical fiber loops,” Opt. Lett. 24, 1172–1174 (1999). [CrossRef]
  14. K. R. Tamura and M. Nakazawa, “Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 11, 230–232 (1999). [CrossRef]
  15. M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999). [CrossRef]
  16. K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 526–528 (2001). [CrossRef]
  17. K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990). [CrossRef] [PubMed]
  18. A. L. Steele, “Pulse compression by an optical fiber loop mirror constructed from two different fibers,” Electron. Lett. 29, 1972–1974 (1993). [CrossRef]
  19. I. Y. Khrushchev, I. H. White, and R. V. Penty, “High-quality laser diode pulse compression in dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009–1010 (1998). [CrossRef]
  20. L. Chusseau and E. Delevague, “250-fs optical pulse generation by simultaneously soliton compression and shaping in a nonlinear optical loop mirror including a weak attenuation,” Opt. Lett. 19, 734–736 (1994). [CrossRef] [PubMed]
  21. J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43–47 (2000). [CrossRef]
  22. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fiber for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994). [CrossRef]
  23. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994). [CrossRef] [PubMed]
  24. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Gen-eration of fundamental soliton train for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991). [CrossRef]
  25. S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, and D. N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550 nm,” Electron. Lett. 28, 1210–1212 (1992). [CrossRef]
  26. A. V. Shipulin, D. G. Fursa, E. A. Golovchenko, and E. M. Dianov, “High repetition rate cw fundamental soliton generation using multisoliton pulse compression in a varying dispersion fiber,” Electron. Lett. 29, 1401–1403 (1993). [CrossRef]
  27. A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380–1382 (1994). [CrossRef]
  28. A. L. Steele and J. P. Hemingway, “Nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 123, 487–491 (1996). [CrossRef]
  29. J. L. S. Lima and A. S. B. Sombra, “Soliton and quasi-soliton switching in nonlinear optical loop mirror constructed from dispersion decreasing fiber,” Opt. Commun. 163, 292–300 (1999). [CrossRef]
  30. A. Boskovic, S. V. Chernikov, and J. R. Taylor, “Femtosec-ond figure of eight Yb:Er fiber laser incorporating a dispersion decreasing fiber,” Electron. Lett. 31, 1446–1448 (1995). [CrossRef]
  31. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chapts. 5 and 6.
  32. A. Mostofi, H. Hatami-Hanza, and P. L. Chu, “Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers,” IEEE J. Quantum Electron. 33, 620–628 (1997). [CrossRef]
  33. A. Hasegawa, Optical Solitons in Fibers (Springer-Verlag, Berlin, 1989).
  34. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988). [CrossRef] [PubMed]
  35. K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 18, 1150–1152 (1993). [CrossRef] [PubMed]
  36. C. Desem and P. L. Chu, “Effect of chirping on soliton propagation in single-mode optical fibers,” Opt. Lett. 11, 248–250 (1986). [CrossRef]
  37. J. D. Minelly, A. Galvanauskas, M. E. Fermann, D. Harter, J. E. Caplen, Z. J. Chen, and D. N. Payne, “Femtosecond pulse amplification in cladding-pumped fibers,” Opt. Lett. 20, 1797–1799 (1995). [CrossRef] [PubMed]
  38. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, Boston, Mass., 2001), Chapt. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited