OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 1374–1385

Simple method for calculating the propagation of terahertz radiation in experimental geometries

D. Côté, J. E. Sipe, and H. M. van Driel  »View Author Affiliations

JOSA B, Vol. 20, Issue 6, pp. 1374-1385 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A formalism based on plane-wave decomposition is applied to the linear propagation of terahertz pulses in experimental geometries. The approach is general and is not restricted to any particular polarization (or current) source. Near- and far-field expressions easily amenable to numerical computation are obtained for the temporal profiles and spectra of terahertz pulses in layered structures, as often encountered in experiments. The effects of polarization and angle-dependent multiple reflection and transmission, as well as of material dispersion, are included. Examples of optical rectification in GaAs and ZnTe are presented to illustrate the simplicity of the method and are compared with experiments. The numerical evaluation of the expressions for the terahertz electric field in practical experimental geometries is straightforward.

© 2003 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7120) Ultrafast optics : Ultrafast phenomena
(350.5500) Other areas of optics : Propagation
(350.5610) Other areas of optics : Radiation

D. Côté, J. E. Sipe, and H. M. van Driel, "Simple method for calculating the propagation of terahertz radiation in experimental geometries," J. Opt. Soc. Am. B 20, 1374-1385 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap. 9.
  2. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 16.
  3. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, and A. B. B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001). [CrossRef]
  4. C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988). [CrossRef]
  5. J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25–27 (1991). [CrossRef]
  6. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995). [CrossRef]
  7. O. Dietrich, F. Krausz, and P. B. Corkum, “Determining the absolute carrier phase of a few-cycle laser pulse,” Opt. Lett. 25, 16–18 (2000). [CrossRef]
  8. S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999). [CrossRef]
  9. E. Budiharto, N.-W. Pu, S. Jeong, and J. Bokor, “Near-field propagation of terahertz pulses from large-aperture antenna,” Opt. Lett. 23, 213–215 (1998). [CrossRef]
  10. A. E. Kaplan, “Diffraction-induced transformation of near-cycle and subcycle pulses,” J. Opt. Soc. Am. B 15, 951–956 (1998). [CrossRef]
  11. S. Feng, H. G. Winful, and R. W. Hellwarth, “Gouy shift and temporal reshaping of focused single-cycle electromagnetic pulses,” Opt. Lett. 23, 385–387 (1998); errata 23, 1141 (1998). [CrossRef]
  12. S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025–2028 (1999). [CrossRef]
  13. S. Nekkanti, D. Sullivan, and D. S. Citrin, “Simulation of spatiotemporal terahertz pulse shaping in 3-D using conductive apertures of finite thickness,” IEEE J. Quantum Electron. 37, 1226–1231 (2001). [CrossRef]
  14. D. Co⁁té, N. Laman, and H. M. van Driel, “Rectification and shift currents in GaAs,” Appl. Phys. Lett. 80, 905–907 (2002). [CrossRef]
  15. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481–489 (1987). [CrossRef]
  16. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1985), Chap. 1, p. 51.
  17. A. E. Siegman, Lasers (University Science, California, 1986), Chap. 20.
  18. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap. 3, p. 131.
  19. J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105, 489–504 (1981). [CrossRef]
  20. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996). [CrossRef]
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  22. A. E. Siegman, Lasers (University Science, California, 1986), p. 637.
  23. P. Y. Han and X.-C. Zhang, “Coherent, broadband midinfrared terahertz beam sensors,” Appl. Phys. Lett. 73, 3049–3051 (1998). [CrossRef]
  24. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16, 1204–1212 (1999). [CrossRef]
  25. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999). [CrossRef]
  26. H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, “Distortion of terahertz pulses in electro-optic sampling,” J. Opt. Soc. Am. B 15, 1795–1801 (1998). [CrossRef]
  27. A computer implementation of the calculations in C/C++ can be obtained at http://www.novajo.ca/thzcode.html.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited