OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1427–1436

Small-core silica holey fibers: nonlinearity and confinement loss trade-offs

Vittoria Finazzi, Tanya M. Monro, and David J. Richardson  »View Author Affiliations


JOSA B, Vol. 20, Issue 7, pp. 1427-1436 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001427


View Full Text Article

Enhanced HTML    Acrobat PDF (455 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holey fibers with small-core dimensions relative to the optical wavelength and large air-filling fractions offer tight mode confinement and are therefore attractive for highly nonlinear fiber applications. We investigated the role of confinement loss in these small-core fibers to optimize the design of practical highly nonlinear fibers. We found that silica holey fibers can exhibit effective nonlinearities as great as 52 W-1 km-1 and that the confinement loss can be less than the losses of standard fiber types. We show that the dispersive properties of some of the designs are suitable for a range of device applications.

© 2003 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

Citation
Vittoria Finazzi, Tanya M. Monro, and David J. Richardson, "Small-core silica holey fibers: nonlinearity and confinement loss trade-offs," J. Opt. Soc. Am. B 20, 1427-1436 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-7-1427


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  2. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999). [CrossRef]
  3. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). [CrossRef]
  4. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233–1235 (2001). [CrossRef]
  5. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660–1662 (2001). [CrossRef]
  6. K. Tajima, K. Nakajima, K. Kurokawa, N. Yoshizawa, and M. Ohashi, “Low-loss photonic crystal fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 523–524.
  7. V. Finazzi, T. M. Monro, and D. J. Richardson, “Confinement loss in highly nonlinear holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.
  8. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, “Raman effects in a highly nonlinear holey fiber: amplification and modulation,” Opt. Lett. 27, 424–426 (2002). [CrossRef]
  9. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method,” Opt. Express 9, 721–732 (2001), http://www.opticsexpress.org. [CrossRef] [PubMed]
  10. W. Wijngaard, “Guided normal modes of two parallel circular dielectric rods,” J. Opt. Soc. Am. 63, 944–949 (1973). [CrossRef]
  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  12. Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Phil. Mag. 34, 481–502 (1892). [CrossRef]
  13. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microwave Theory Tech. MTT-23, 421–429 (1975). [CrossRef]
  14. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001). [CrossRef]
  15. A. W. Snyder and J. D. Love, in Optical Waveguide Theory (Chapman & Hall, London, 1995), Chap. 30, p. 593.
  16. D. N. Nikogosyan, Optical and Laser-Related Materials (Wiley, Chichester, UK, 1997).
  17. N. Nakazawa, H. Kubota, and K. Tamura, “Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise,” Opt. Lett. 24, 318–320 (1999). [CrossRef]
  18. K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001). [CrossRef]
  19. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air–silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999). [CrossRef]
  20. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997). [CrossRef]
  21. S. R. Friberg and P. W. Smith, “Nonlinear optical-glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987). [CrossRef]
  22. T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson “High nonlinear extruded single-mode holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), 315–317.
  23. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, and D. J. Richardson, “Extruded single-mode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited