OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1447–1458

General temporal self-imaging phenomena

José Azaña and Lawrence R. Chen  »View Author Affiliations


JOSA B, Vol. 20, Issue 7, pp. 1447-1458 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001447


View Full Text Article

Acrobat PDF (343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the space–time duality theory, we introduce and analyze theoretically the temporal equivalent of the spatial self-imaging phenomena under point-source illumination (spherical wave-front illumination). This temporal effect can be produced by passing a given periodic optical pulse sequence through a time lens followed by a dispersive medium. The time lens (quadratic phase modulator) implements the time-domain equivalent of spherical wave-front illumination. Based on this temporal effect, we demonstrate that a system composed of a time lens followed by a dispersive medium can be configured to operate over a periodic optical pulse sequence of finite duration (i) as a conventional temporal imaging system, providing a distortionless temporal compression or expansion of the original pulse sequence, or (ii) as an advanced temporal imaging system, combining the capabilities of a conventional imaging system with those of the fractional temporal self-imaging effect, i.e., multiplication of the original pulse-repetition rate.

© 2003 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(110.0110) Imaging systems : Imaging systems
(320.5550) Ultrafast optics : Pulses

Citation
José Azaña and Lawrence R. Chen, "General temporal self-imaging phenomena," J. Opt. Soc. Am. B 20, 1447-1458 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-7-1447


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
  2. T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71, 1373–1376 (1981).
  3. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8, 232–234 (1983).
  4. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989).
  5. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens: erratum,” Opt. Lett. 15, 655 (1990).
  6. A. W. Lohman and D. Mendlovic, “Temporal filtering with time lenses,” Appl. Opt. 31, 6212–6219 (1992).
  7. A. A. Godil, B. A. Auld, and D. M. Bloom, “Time lens producing 1.9 ps optical pulses,” Appl. Phys. Lett. 62, 1047–1049 (1993).
  8. A. Papoulis, “Pulse compression, fiber communications, and diffraction: a unified approach,” J. Opt. Soc. Am. A 11, 3–13 (1994).
  9. B. H. Kolner, “Space–time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
  10. P. Naulleau and E. Leith, “Stretch, time lenses and incoherent time imaging,” Appl. Opt. 34, 4119–4128 (1995).
  11. F. Mitschke and U. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9(6), 45–47 (1998).
  12. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103× magnification of femtosecond waveforms,” Opt. Lett. 24, 783–785 (1999).
  13. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. I. System configurations,” IEEE J. Quantum Electron. 36, 430–437 (2000).
  14. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. II. System performance,” IEEE J. Quantum Electron. 36, 649–655 (2000).
  15. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett. 24, 1–3 (1999).
  16. J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transforma-tion using linearly chirped fibre Bragg gratings,” Electron. Lett. 35, 2223–2224 (1999).
  17. J. Azaña and M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999).
  18. J. Azaña and M. A. Muriel, “Temporal Talbot effect in fiber gratings and its applications,” Appl. Opt. 38, 6700–6704 (1999).
  19. J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36, 517–526 (2000).
  20. N. K. Berger, B. Levit, S. Atkins, and B. Fischer, “Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation,” Electron. Lett. 36, 1644–1646 (2000).
  21. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
  22. K. Patorski, “The self-imaging phenomenon and its applications,” Progress in Optics XXVII, E. Wolf, ed. (Elsevier, Amsterdam, The Netherlands, ), 19891–108.
  23. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
  24. S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 μm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000).
  25. J. M. Cowley and A. F. Moodie, “Fourier images. I. The point source,” Proc. Phys. Soc. London 70, 486–496 (1957).
  26. J. M. Cowley and A. F. Moodie, “Fourier images. II. The out-of-focus patterns,” Proc. Phys. Soc. London 70, 497–504 (1957).
  27. A. Papoulis, The Fourier Integral and its Applications (McGraw-Hill, New York, 1987).
  28. J. Azaña, “Temporal self-imaging effects of periodic optical pulse sequences of finite duration,” J. Opt. Soc. Am. B 20, 83–90 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited