OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1468–1472

Idler enhancement by self-difference frequency mixing

Alain Brenier  »View Author Affiliations

JOSA B, Vol. 20, Issue 7, pp. 1468-1472 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The self-difference frequency mixing (SDFM) laser is a device that can be used to generate wavelengths in the infrared range. I describe theoretical modeling of the SDFM laser from which it is shown that the stimulated emission is beneficial to the idler and drastically decreases the threshold of idler generation. An experimental check is provided.

© 2003 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.7300) Lasers and laser optics : Visible lasers
(160.3380) Materials : Laser materials
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.0300) Spectroscopy : Spectroscopy

Alain Brenier, "Idler enhancement by self-difference frequency mixing," J. Opt. Soc. Am. B 20, 1468-1472 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997). [CrossRef]
  2. C. Li, R. Moncorgé, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm,” Opt. Commun. 107, 61–64 (1994). [CrossRef]
  3. S. R. Bowman, M. J. Winings, S. Searles, and B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr, Tm, Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991). [CrossRef]
  4. W. Ruderman, “Active optics,” Electro-Opt. Syst. Des. 11, 76–77 (1979).
  5. H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48, 3633–3645 (1993). [CrossRef]
  6. K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991). [CrossRef]
  7. P. Rambaldi, M. Douard, B. Vezin, and J. P. Wolf, “Broadly tunable KnbO3 OPOs pumped by Ti:sapphire lasers,” Opt. Commun. 142, 262–264 (1997). [CrossRef]
  8. D. S. Bethune and A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986). [CrossRef]
  9. A. R. Geiger, H. Hemmati, W. H. Farr, and N. S. Prasad, “Diode-pumped optical parametric oscillator,” Opt. Lett. 21, 201–203 (1996). [CrossRef] [PubMed]
  10. L. F. Johnson and A. A. Ballman, “Coherent emission from rare earth ions in electro-optics crystals,” J. Appl. Phys. 40, 297–302 (1969). [CrossRef]
  11. D. Jaque, J. Capmany, F. Molero, and J. Garcia Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998). [CrossRef]
  12. A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999). [CrossRef]
  13. F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “cw blue laser generation by self-sum-frequency mixing in Nd:Ca4GdO(BO3)3(Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999). [CrossRef]
  14. A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000). [CrossRef]
  15. A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin. 91, 121–132 (2000). [CrossRef]
  16. X. Chen, Z. Luo, and Y. Huang, “Modeling of the self-sum-frequency mixing laser,” J. Opt. Soc. Am. B 18, 646–656 (2001). [CrossRef]
  17. A. Brenier, C. Tu, J. Li, Z. Zhu, and B. Wu, “Self-sum- and-difference-frequency mixing in GdAl3(BO3)4:Nd3+ for tunable ultraviolet and infrared radiation,” Opt. Lett. 27, 240–242 (2002). [CrossRef]
  18. C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000). [CrossRef]
  19. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997). [CrossRef]
  20. Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40, 63–73 (2000). [CrossRef]
  21. X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase-matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals,” Opt. Commun. 196, 299–307 (2001). [CrossRef]
  22. Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001). [CrossRef]
  23. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997). [CrossRef]
  24. A. Yariv, Quantum Electronics (Wiley, New York, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited