OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1503–1507

Diffraction-induced near-field optical images in mesoscale air–dielectric structures

Pei-Kuen Wei, Hsieh-Li Chou, and Wei-Lun Chang  »View Author Affiliations


JOSA B, Vol. 20, Issue 7, pp. 1503-1507 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001503


View Full Text Article

Acrobat PDF (504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical contrast on the surface of mesoscale air–dielectric structures was evaluated with collection-mode near-field scanning optical microscopy. When air holes (300 nm) were smaller than the incident wavelength (400 or 600 nm), the optical field was concentrated in the dielectric region. When air holes (1000 nm) were larger than the incident wavelength (400 or 600 nm), there was topographic edge enhancement. After confirmation with finite-difference time-domain simulation, we conclude that light diffracted off topographic edges is a major contributor to contrast in collection-mode near-field optical images.

© 2003 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(100.6640) Image processing : Superresolution
(180.5810) Microscopy : Scanning microscopy
(240.0310) Optics at surfaces : Thin films

Citation
Pei-Kuen Wei, Hsieh-Li Chou, and Wei-Lun Chang, "Diffraction-induced near-field optical images in mesoscale air–dielectric structures," J. Opt. Soc. Am. B 20, 1503-1507 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-7-1503


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283–295 (1993).
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
  3. S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
  4. J. D. Joannopoulos, R. D. Meade, and S. N. Winn, Photonic crystals: Molding the Flow of Light (Princeton University, Princeton, N.J., 1995).
  5. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
  6. J.-C. Weeber, C. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
  7. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
  8. S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structure in near field,” Eur. Phys. J. AP 5, 277–282 (1999).
  9. P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
  10. A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
  11. D. Mulin, C. Girard, G. Colas Des Francs, M. Spajer, and D. Courjon, “Near-field optical probing of two-dimensional photonic crystals: theory and experiment,” J. Microsc. (Oxford) 202, 110–116 (2001).
  12. A. L. Campillo, J. W. P. Hsu, and G. W. Bryant, “Local imaging of photonic structures: image contrast from impedance mismatch,” Opt. Lett. 27, 415–417 (2002).
  13. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
  14. D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
  15. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
  17. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
  18. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited