OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1508–1513

Discrete orthogonal Gauss–Hermite transform for optical pulse propagation analysis

Pavlos Lazaridis, Guy Debarge, and Philippe Gallion  »View Author Affiliations


JOSA B, Vol. 20, Issue 7, pp. 1508-1513 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001508


View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A discrete orthogonal Gauss–Hermite transform (DOGHT) is introduced for the analysis of optical pulse properties in the time and frequency domains. Gaussian quadrature nodes and weights are used to calculate the expansion coefficients. The discrete orthogonal properties of the DOGHT are similar to the ones satisfied by the discrete Fourier transform so the two transforms have many common characteristics. However, it is demonstrated that the DOGHT produces a more compact representation of pulses in the time and frequency domains and needs less expansion coefficients for a given accuracy. It is shown that it can be used advantageously for propagation analysis of optical signals in the linear and nonlinear regimes.

© 2003 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.5550) Ultrafast optics : Pulses

Citation
Pavlos Lazaridis, Guy Debarge, and Philippe Gallion, "Discrete orthogonal Gauss–Hermite transform for optical pulse propagation analysis," J. Opt. Soc. Am. B 20, 1508-1513 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-7-1508


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19, 1653–1660 (1980). [CrossRef] [PubMed]
  2. R. H. Hardin and F. D. Tappert, “Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,” SIAM (Soc. Ind. Appl. Math.) Rev. 15, 423 (1973).
  3. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973). [CrossRef]
  4. T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,” J. Comput. Phys. 55, 203–230 (1984). [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  6. H. da Silva and J. O’Reilly, “Optical pulse modeling with Hermite–Gaussian functions,” Opt. Lett. 14, 526–528 (1989). [CrossRef] [PubMed]
  7. S. Dijali, A. Dienes, and J. Smith, “ABCD matrices for dispersive pulse propagation,” IEEE J. Quantum Electron. 26, 1158–1164 (1990). [CrossRef]
  8. T. Tang, “The Hermite spectral method for Gaussian-type functions,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 14, 594–606 (1993). [CrossRef]
  9. P. Lazaridis, G. Debarge, and P. Gallion, “Exact solutions for linear propagation of chirped pulses using a chirped Gauss–Hermite orthogonal basis,” Opt. Lett. 22, 685–687 (1997). [CrossRef] [PubMed]
  10. A. Bogush and R. Elkins, “Gaussian field expansions for large aperture antennas,” IEEE Trans. Antennas Propag. 34, 228–243 (1986). [CrossRef]
  11. J. Murphy and R. Padman, “Phase centers of horn antennas using Gaussian beam mode analysis,” IEEE Trans. Antennas Propag. 38, 1306–1310 (1990). [CrossRef]
  12. M. Rao, T. Sarkar, T. Anjali, and R. S. Adve, “Simultaneous extrapolation in time and frequency domains using Hermite expansions,” IEEE Trans. Antennas Propag. 47, 1108–1115 (1999). [CrossRef]
  13. T. Oliveira e Silva and H. J. W. Belt, “On the determination of the optimal center and scale factor for truncated Hermite series,” presented at the European Conference on Signal Processing (EUSIPCO-96) Trieste, Italy, September 10–13, 1996, paper PFT.11.
  14. J.-B. Martens, “The Hermite transform theory,” IEEE Trans. Acoust., Speech, Signal Process. 38, 1595–1606 (1990). [CrossRef]
  15. A. M. van Dijk and J.-B. Martens, “Image representation and compression with steered Hermite transforms,” Signal Process. 56, 1–16 (1997). [CrossRef]
  16. L. Lo Conte, R. Merletti, and G. Sandri, “Hermite expansions of compact support waveforms: applications to myoelectric signals,” IEEE Trans. Biomed. Eng. 41, 1147–1159 (1994). [CrossRef] [PubMed]
  17. A. I. Rasiah, R. Togneri, and Y. Attikiouzel, “Modelling 1-D signals using Hermite basis functions,” IEE Proc. Vision Image Signal Process. 144(6), 345–354 (1997). [CrossRef]
  18. A. J. Jerri, “The application of general discrete transforms to computing orthogonal series and solving boundary value problems,” Bull. Calcutta Math. Soc. 71, 177–187 (1979).
  19. P. Lazaridis, G. Debarge, and P. Gallion, “Split-step-Gauss-Hermite algorithm for fast and accurate simulation of soliton propagation,” Int. J. Numer. Model. 14, 325–329 (2001). [CrossRef]
  20. N. J. Zabusky and M. D. Kruskal, “Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett. 15, 240–243 (1965). [CrossRef]
  21. J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. Suppl. 55, 284–306 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited