OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1532–1537

Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement

Laurent Provino, Arnaud Mussot, Eric Lantz, Thibaut Sylvestre, and Hervé Maillotte  »View Author Affiliations

JOSA B, Vol. 20, Issue 7, pp. 1532-1537 (2003)

View Full Text Article

Acrobat PDF (157 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a simple scheme to allow for the achievement of flat gain over ultrabroad bands with a single-pump fiber-optic parametric amplifier operating in the zero-dispersion wavelength region. The proposed method, based on a multisection dispersion-tailored in-line nonlinear fiber arrangement, is demonstrated by both modulational instability theory and numerical simulations of the nonlinear Schrödinger equation. The results show that the design can be adjusted to generate gain bands that exceed either 100 nm with a ripple of less than 0.2 dB and for a pump power of only 500 mW, or even 200 nm when a pump power of 5 W is used. In addition, the robustness of this gain-flattening technique has been numerically checked against random fluctuations of the zero-dispersion wavelength in each of the fiber sections.

© 2003 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

Laurent Provino, Arnaud Mussot, Eric Lantz, Thibaut Sylvestre, and Hervé Maillotte, "Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F. S. Yang, M. E. Marhic, and L. G. Kazovsky, “CW fiber optical parametric amplifier with net gain and wavelength conversion efficiency >1,” Electron. Lett. 32, 2236–2238 (1996).
  2. J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photon. Technol. Lett. 13, 194–196 (2001).
  3. C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, and J. R. Taylor, “Continuous-wave-pumped Raman-assisted fiber optical parametric amplifier and wavelength converter in conventional dispersion-shifted fiber,” Opt. Lett. 26, 1583–1585 (2001).
  4. J. L. Blows and S. E. French, “Low-noise-figure optical parametric amplifier with a continuous-wave frequency-modulated pump,” Opt. Lett. 27, 491–493 (2002).
  5. W. Imajuku, A. Takada, and Y. Yamabayashi, “In-line coher-ent optical amplifier with noise figure lower than 3dB quantum limit,” Electron. Lett. 36, 63–65 (2000).
  6. M. N. Islam and Ö. Boyraz, “Fiber parametric amplifiers for wavelength band conversion,” IEEE J. Sel. Top. Quantum Electron. 8, 527–537 (2002).
  7. J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
  8. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21, 573–575 (1996).
  9. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, “Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Opt. Lett. 21, 1354–1356 (1996).
  10. C. J. McKinstrie and S. Radic, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett. 27, 1138–1140 (2002).
  11. K. Inoue, “Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Opt. Lett. 19, 1189–1191 (1994).
  12. M. E. Marhic, F. S. Yang, M.-C. Ho, and L. G. Kazovsky, “High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation,” J. Lightwave Technol. 17, 210–215 (1999).
  13. J. Kim, O. Boyraz, J. H. Lim, and M. N. Islam, “Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: theory and experiment,” J. Lightwave Technol. 19, 247–251 (2001).
  14. Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical lim-iter using gain flattened fibre optical parametric amplifier,” Electron. Lett. 36, 1103–1105 (2000).
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  16. A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. QE-16, 694–697 (1980).
  17. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
  18. D. Gindre, H. Maillotte, J. Monneret, E. Lantz, and C. Froehly, “Coherent picosecond parametric amplification through a Kerr-induced index grating in a single-mode fiber,” Opt. Commun. 112, 75–79 (1994).
  19. M. Eiselt, R. M. Jopson, and R. H. Stolen, “Nondestructive position-resolved measurement of the zero-dipersion wavelength in an optical fiber,” J. Lightwave Technol. 15, 135–143 (1997).
  20. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15, 2269–2275 (1998).
  21. N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8, 1476–1481 (1990).
  22. S. E. French and J. L. Blows, “Continuous wave optical parametric amplifier with flattened gain,” in Optical Amplifiers and Their Applications, N. E. Jolley, J. D. Minelly, and Y. Nakano, eds., Vol. 60 of OSA Trends in Optics and Photonics (Optical Society of America, Washington D.C., 2001), Postdeadline paper PD7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited