OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1568–1574

Self-organized array of regularly spaced microbeads in a fiber-optical trap

Wolfgang Singer, Manfred Frick, Stefan Bernet, and Monika Ritsch-Marte  »View Author Affiliations

JOSA B, Vol. 20, Issue 7, pp. 1568-1574 (2003)

View Full Text Article

Acrobat PDF (337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The behavior of several simultaneously trapped, micrometer-sized particles in a fiber-optical trap consisting of two opposing single-mode fibers delivering counterpropagating, near-IR laser beams strongly depends on the size of the particles. Whereas beads that are considerably larger than the laser wavelength are pressed against each other in an axial line, smaller beads spontaneously arrange themselves into regular chains of equidistantly separated particles suspended in space with increasing separation for increasing bead diameter. A simple model based on self-organization by means of diffraction from the particles is capable of explaining the basic features of our experimental observations in the investigated range of bead diameters and refractive indices.

© 2003 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.3950) Other areas of optics : Micro-optics

Wolfgang Singer, Manfred Frick, Stefan Bernet, and Monika Ritsch-Marte, "Self-organized array of regularly spaced microbeads in a fiber-optical trap," J. Opt. Soc. Am. B 20, 1568-1574 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
  4. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
  5. S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
  6. S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
  7. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
  8. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
  9. A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
  10. S. R. Quake, H. Babcock, and S. Chu, “The dynamics of partially extended single molecules of DNA,” Nature 388, 151–154 (1997).
  11. Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
  12. S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, S. Grinstein and K. Foskett, eds. (Wiley, New York, 1990), pp. 375–402.
  13. K. O. Greulich, Micromanipulation by Light in Biology and Medicine (Birkhäuser, Basel, Switzerland, 1999).
  14. M. P. Sheetz, L. Wilson, and P. Matsudaira, eds., Laser Tweezers in Cell Biology (Academic, San Diego, Calif., 1998).
  15. L. P. Ghislain and W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18, 1678–1680 (1993).
  16. A. Rohrbach, E.-L. Florin, and E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,”in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels and M. F. Kaschke, eds., Proc. SPIE 4431, 75–86 (2001).
  17. S. Chu, “Laser manipulation of atoms and particles,” Science 253, 861–866 (1991).
  18. C. Cohen-Tannoudji, “Atomic motion in laser light,” in Fundamental Systems in Quantum Optics, J. Dalibard, J.-M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1992), pp. 19–30.
  19. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1993).
  20. A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001).
  21. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
  22. A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
  23. D. G. Grier, “A revolution in optical manipulation,” Nature (to be published).
  24. A. van Blaaderen, K. P. Velikov, J. P. Hoogenboom, D. L. J. Vossen, A. Yethiraj, R. Dullens, T. v. Dillen, and A. Polman, “Manipulation of colloidal crystallization for photonic applications: from self-organization to do-it-yourself organization,” in Photonic Crystals and Light Localization in the 21st Century, NATO Advanced Study Institute, C. M. Soukoulis, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 239–251.
  25. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
  26. D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).
  27. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
  28. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
  29. M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
  30. W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
  31. R. H. Boundy and R. F. Boyer, Styrene, Its Polymers, Copolymers and Derivatives (Reinhold, New York, 1952), pp 523–525.
  32. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th ed. (Chemical Rubber, Cleveland, Ohio, 1998–1999), pp. 8–81.
  33. P. Domokos and H. Ritsch, “Collective cooling and self-organization of atoms in a cavity,” Phys. Rev. Lett. 89, 253003 (2002).
  34. W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited