OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 8 — Aug. 1, 2003
  • pp: 1593–1602

Multichannel wavelength-division multiplexing with thermally fixed Bragg gratings in photorefractive lithium niobate crystals

Ingo Nee, Oliver Beyer, Manfred Müller, and Karsten Buse  »View Author Affiliations

JOSA B, Vol. 20, Issue 8, pp. 1593-1602 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transmission capacity of fiber communication networks is enhanced by usage of dense wavelength division multiplexing (WDM). This technique requires wavelength filters for multiplexing of the channels. We report on the realization of a multiplexer device based on superimposed volume-phase gratings in a single lithium niobate crystal. The gratings are recorded through the photorefractive effect by interference of two green laser beams. Thermal fixing is employed to increase the lifetime of the gratings. Each grating diffracts light of a certain WDM channel (wavelengths of ∼1500 nm). Simultaneous multiplexing of many channels is achieved by suitable arrangement of the gratings in the crystal. We present the basic concept of this technology as well as recent advances: (1) refined experimental methods about tailored recording of many-channel multiplexers, (2) characterization of the multiplexers for up to sixteen WDM channels (1-dB bandwidth up to 0.1 nm, channel spacing down to 0.4 nm), and (3) construction of a two-channel multiplexer device.

© 2003 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(060.4230) Fiber optics and optical communications : Multiplexing
(090.4220) Holography : Multiplex holography
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials
(230.1480) Optical devices : Bragg reflectors

Ingo Nee, Oliver Beyer, Manfred Müller, and Karsten Buse, "Multichannel wavelength-division multiplexing with thermally fixed Bragg gratings in photorefractive lithium niobate crystals," J. Opt. Soc. Am. B 20, 1593-1602 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Grote and H. V. Venghaus, eds., Fiber Optic Communication Devices (Springer-Verlag, New York, 2001).
  2. S. V. Kartalopoulos, Introduction to DWDM Technology, Data in a Rainbow (IEEE, New York, 2000).
  3. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988). [CrossRef]
  4. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978). [CrossRef]
  5. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997). [CrossRef]
  6. K. O. Hill, “Aperiodic distributed-parameter waveguides for integrated optics,” Appl. Opt. 13, 1853–1856 (1974). [CrossRef] [PubMed]
  7. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, D. C. Johnson, and J. Albert, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19, 1314–1316 (1994). [CrossRef] [PubMed]
  8. M. Matsuhara and K. O. Hill, “Optical-waveguide band-rejection filters: design,” Appl. Opt. 13, 2886–2888 (1974). [CrossRef] [PubMed]
  9. P. S. Cross and H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filter,” Opt. Lett. 1, 43–45 (1977). [CrossRef]
  10. W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180–2194 (1977). [CrossRef] [PubMed]
  11. P. Boffi, D. Piccinin, and M. C. Ubaldi, Topics in Applied Physics: Infrared Holography for Optical Communications Techniques, Materials, and Devices (Springer-Verlag, New York, 2003), Vol. 86.
  12. S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998). [CrossRef]
  13. S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999). [CrossRef]
  14. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  15. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997). [CrossRef]
  16. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977). [CrossRef]
  17. I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000). [CrossRef]
  18. K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999). [CrossRef]
  19. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991). [CrossRef] [PubMed]
  20. E. S. Maniloff and K. M. Johnson, “Incremental recording for photorefractive hologram multiplexing: comment,” Opt. Lett. 17, 961 (1992). [CrossRef] [PubMed]
  21. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S. H. Lee, “Incremental recording for photorefractive hologram multiplexing: reply to comment,” Opt. Lett. 17, 962 (1992). [CrossRef] [PubMed]
  22. S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998). [CrossRef]
  23. R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transportin electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978). [CrossRef]
  24. K. Peithmann, K. Buse, and A. Wiebrock, “Incremental holographic recording in lithium niobate with active phase locking,” Opt. Lett. 23, 1927–1929 (1998). [CrossRef]
  25. B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 12792–12805 (1998). [CrossRef]
  26. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996). [CrossRef] [PubMed]
  27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  28. Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and elec-tronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001). [CrossRef]
  29. D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974). [CrossRef]
  30. S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, “Spatial frequency mixing in lithium niobate,” Opt. Commun. 84, 251–257 (1991). [CrossRef]
  31. Y. Kondo, Y. Yamashita, T. Fukuda, T. Takano, H. Nakajima, Y. Furukawa, and K. Kitamura, “Wavelength dependence of electrooptic coefficients in lithium niobate crystals with different composition,” in Proceedings of 10th European Conference on Integrated Optics, W. Sohler, ed. (Bonifatius Verlag, Paderborn, 2001), pp. 185–188.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited