OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 8 — Aug. 1, 2003
  • pp: 1632–1642

Generation of a single hot spot by use of a deformable mirror and study of its propagation in an underdense plasma

Benoit Wattellier, Julien Fuchs, Ji-Ping Zou, Jean-Christophe Chanteloup, Heidi Bandulet, Pierre Michel, Christine Labaune, Sylvie Depierreux, Alexis Kudryashov, and Alexander Aleksandrov  »View Author Affiliations

JOSA B, Vol. 20, Issue 8, pp. 1632-1642 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Adaptive optics systems offer the prospect of significantly increasing the capabilities of high-power laser focusability, which is currently limited by thermal distortions. Using novel wave-front measurement techniques that improve the stability of such systems and a downstream large-aperture deformable mirror that does not bear the usual limitations associated with precompensation, we have improved the focusability of a high-power (6×100-J, 1-ns) Nd:glass laser facility by a factor of 6. Measuring the wave front and the on-target focal spot at full power, we obtained after correction focal spots with a best Strehl ratio of 0.6. The pulse peak intensity could thus be increased to 2×1016 W/cm2, a level beyond reach of the usual focal spot shaping techniques. We then used the near-diffraction-limited focal spots produced by this system to measure the laser–plasma coupling for a single, controlled filament of light and to underline the importance of the coupling among the numerous speckles within conventional multispeckled beams.

© 2003 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects
(190.3100) Nonlinear optics : Instabilities and chaos
(350.4990) Other areas of optics : Particles

Benoit Wattellier, Julien Fuchs, Ji-Ping Zou, Jean-Christophe Chanteloup, Heidi Bandulet, Pierre Michel, Christine Labaune, Sylvie Depierreux, Alexis Kudryashov, and Alexander Aleksandrov, "Generation of a single hot spot by use of a deformable mirror and study of its propagation in an underdense plasma," J. Opt. Soc. Am. B 20, 1632-1642 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Koechner, “Thermal effect in laser rods,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1976), pp. 365–382.
  2. P. E. Young, “Laser beam propagation and channel formation in underdense plasmas,” Phys. Plasmas 2, 2825–2834 (1995). [CrossRef]
  3. W. L. Kruer, Physics of Laser Plasma Interactions (Addison-Wesley, Reading, Mass., 1988).
  4. J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995). [CrossRef]
  5. J. D. Lindl, Inertial Confinement Fusion. The Quest for Ignition and Energy Gain Using Indirect Drive (Springer-Verlag, New York, 1998).
  6. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984). [CrossRef]
  7. J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601–1610 (1999). [CrossRef]
  8. Laboratory for Laser Energetics, University of Rochester, “Phase conversion using distributed polarization rotation,” Vol. 45 of LLE Review (National Technical Information Services, Springfield, Va., 1990).
  9. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992). [CrossRef]
  10. R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983). [CrossRef]
  11. R. Lehmberg, A. Schmitt, and S. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680–2701 (1987). [CrossRef]
  12. S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989). [CrossRef]
  13. D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993). [CrossRef]
  14. C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000). [CrossRef]
  15. E. Valeo, “Stability of filamentary structures (e.m. wave propagation in plasma),” Phys. Fluids 17, 1391–1393 (1974). [CrossRef]
  16. E. Valeo and K. Estabrook, “Stability of the critical surface in irradiated plasma,” Phys. Rev. Lett. 34, 1008–1010 (1975). [CrossRef]
  17. C. Ren and W. B. Mori, “Physical picture for the laser hosing instability in a plasma,” Phys. Plasmas 8, 3118–3119 (2001). [CrossRef]
  18. D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000). [CrossRef] [PubMed]
  19. O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein. [CrossRef]
  20. A. Brantov, V. Bychenkov, V. Tikhonchuck, and W. Rozmus, “Nonlocal electron transport in laser heated plasmas,” Phys. Plasmas 5, 2742–2753 (1998). [CrossRef]
  21. S. Cameron and J. Camacho, “Characterization of heat transport dynamics in laser-produced plasmas using collective Thomson scattering: simulation and proposed experiment,” J. Fusion Energy 14, 373–388 (1995). [CrossRef]
  22. D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999). [CrossRef]
  23. D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–680 (2000). [CrossRef] [PubMed]
  24. F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, 1999).
  25. F. Druon, G. Chériaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J.-C. Chanteloup, and G. Vdovin, “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett. 23, 1043–1045 (1998). [CrossRef]
  26. D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000). [CrossRef]
  27. J.-C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B. Loiseaux, and J.-P. Huignard, “Nearly diffraction-limited laser focal spot obtained by use of an optically addressed light valve in an adaptive-optics loop,” Opt. Lett. 23, 475–477 (1998). [CrossRef]
  28. J.-C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, “Single-shot wave-front measurements of high-intensity ultrashort laser pulses with a three-wave interferometer,” Opt. Lett. 23, 621–623 (1998). [CrossRef]
  29. J. Primot and L. Sogno, “Achromatic three-wave (or more) lateral shearing interferometer,” J. Opt. Soc. Am. A 12, 2679–2685 (1995). [CrossRef]
  30. A. V. Kudryashov and V. I. Shmalhausen, “Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications,” Opt. Eng. 35, 3064–3073 (1996). [CrossRef]
  31. J. Fuchs, B. Wattellier, J. P. Zou, J. C. Chanteloup, H. Bandulet, P. Michel, and C. Labaune, “Wave front correction for near diffraction-limited focal spot on a 6×100 J/1 ns laser facility,” in Laser Applications and Technologies, A. A. Mak and V. Ya. Panchenko, eds., Proc. SPIE (to be published).
  32. K. Strehl, “Uber Luftschlieren und Zonenfehler,” Zeitschrift Instrumentenkunde 22, 213–223 (1902). It is the ratio of the peak intensity at the focus of the beam with the given (distorted) wave front and its near-field intensity profile, to that of the same near-field intensity distribution with a flat wave front.
  33. B. Wattellier, “Amélioration des performances des chai⁁nes lasers solides utilisant l’amplification à dérive de fréquence: nouveaux réseaux de diffraction à haute tenue au flux et mise en forme programmable de faisceaux lasers par modulation de la phase spatiale,” Ph.D. dissertation (Ecole Polytechnique, Palaiseau, France, 2001).
  34. W. Koechner, “Damage of optical elements,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1976), pp. 546–549.
  35. B. Wattellier, J.-C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, “Wave front correction and focusing optimization of partially thermalized Nd:glass high power CPA laser,” in Conference on Lasers and Electro-Optics, OSA 2001 Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.
  36. J. Fuchs, C. Labaune, S. Depierreux, V. Tikhonchuk, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment,” Phys. Plasmas 7, 4659–4668 (2000). [CrossRef]
  37. V. Bychenkov, W. Rozmus, A. Brantov, and V. Tikhonchuk, “Theory of filamentation and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511–1519 (2000). [CrossRef]
  38. B. Bezzerides, H. X. Vu, and R. A. Kopp, “Hydrodynamic coupling of a speckled laser beam to an axially flowing plasma,” Phys. Plasmas 8, 249–259 (2001). [CrossRef]
  39. A. Schmitt and B. Afeyan, “Time-dependent filamentation and stimulated Brillouin forward scattering in inertial con-finement fusion plasmas,” Phys. Plasmas 5, 503–517 (1998). [CrossRef]
  40. A. Schmitt, “The effects of optical smoothing techniques on filamentation in laser plasmas,” Phys. Fluids 31, 3079–3101 (1988). [CrossRef]
  41. S. Hüller, P. Mounaix, V. Tikhonchuk, and D. Pesme, “Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics,” Phys. Plasmas 4, 2670–2680 (1997). [CrossRef]
  42. V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001). [CrossRef]
  43. T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992). [CrossRef] [PubMed]
  44. S. Wilks, P. Young, J. Hammer, M. Tabak, and W. Kruer, “Spreading of intense laser beams due to filamentation,” Phys. Rev. Lett. 73, 2994–2997 (1994). [CrossRef] [PubMed]
  45. V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997). [CrossRef]
  46. P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995). [CrossRef] [PubMed]
  47. E. M. Epperlein, “Kinetic theory of laser filamentation in plasmas,” Phys. Rev. Lett. 65, 2145–2148 (1990). [CrossRef] [PubMed]
  48. E. M. Epperlein and R. W. Short, “Nonlocal heat transport effects on the filamentation of light in plasmas,” Phys. Fluids B 4, 2211–2216 (1992). [CrossRef]
  49. J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001). [CrossRef]
  50. J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001). [CrossRef] [PubMed]
  51. C. Yamanaka, T. Yamanaka, J. Mizui, and N. Yamaguchi, “Self-phase modulation of laser light in a laser-produced plasma,” Phys. Rev. A 11, 2138–2141 (1975). [CrossRef]
  52. P. E. Young, “Experimental observation of filamentation growth in laser-produced plasmas,” Phys. Plasmas 2, 2815–2824 (1995). [CrossRef]
  53. R. W. Short and E. M. Epperlein, “Thermal stimulated Brillouin scattering in laser-produced plasmas,” Phys. Rev. Lett. 68, 3307–3310 (1992). [CrossRef] [PubMed]
  54. E. Williams, “Convective growth of parametrically unstable modes in inhomogeneous media,” Phys. Fluids B 3, 1504–1506 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited