OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 8 — Aug. 1, 2003
  • pp: 1708–1714

Microscopic treatment of upconversion in Nd3+-doped samples

Luigi Palatella, Francesco Cornacchia, Alessandra Toncelli, and Mauro Tonelli  »View Author Affiliations


JOSA B, Vol. 20, Issue 8, pp. 1708-1714 (2003)
http://dx.doi.org/10.1364/JOSAB.20.001708


View Full Text Article

Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We deal with the analysis of fluorescence decay of metastable manifolds of rare-earth ions in the presence of upconversion processes, with attention focused on Nd3+-doped crystals. In the literature this phenomenon is usually studied by means of rate equations or microscopic treatment. Here we show that only the second approach is correct in our experimental conditions, i.e., when the population dynamics is fast in comparison with the typical migration time τ0, and τ0 is considerably longer than the radiative lifetime. We studied the population dynamics after pulsed-laser excitation of some Nd3+-doped crystals, namely, BaY2F8:Nd3+ at 3.75%, LiYF4:Nd3+ at 1.05%, and KLa(MoO4)2:Nd3+ at 5.3%. We observed that the rate-equation formalism cannot reproduce the experimental data, therefore we used a microscopic treatment that gave much better results. From this analysis, after reaching the saturation regime, we were able to determine the donor–acceptor transfer constant Cda for the samples under investigation in an unconventional way.

© 2003 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(190.7220) Nonlinear optics : Upconversion
(260.2160) Physical optics : Energy transfer
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Citation
Luigi Palatella, Francesco Cornacchia, Alessandra Toncelli, and Mauro Tonelli, "Microscopic treatment of upconversion in Nd3+-doped samples," J. Opt. Soc. Am. B 20, 1708-1714 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-8-1708


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Guy, C. L. Bonner, D. P. Shepard, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998).
  2. M. Pollnau, P. J. Hardmann, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
  3. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
  4. M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
  5. M. P. Hehlen, G. Frei, and H. U. Gudel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1% Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
  6. P. J. Hardmann, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999).
  7. D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiYF5,” Opt. Commun. 191, 277–294 (2001).
  8. A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, “Luminescence self-quenching from 4F3/2, 2P3/2, and 4D3/2 neodymium levels in double sodium–yttrium fluoride crystals,” J. Lumin. 94–95, 343–347 (2001).
  9. M. V. Artamonova, Ch. M. Briskina, A. I. Burshtein, L. D. Zusman, and A. G. Skleznev, “Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass,” Sov. Phys. JETP 35, 457–461 (1972).
  10. Th. Forster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
  11. D. L. Dexter, “Theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
  12. S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).
  13. V. Lupei, A. Lupei, S. Georgescu, and W. M. Yen, “Effects of energy transfer on quantum efficiency of Nd:YAG,” J. Appl. Phys. 66, 3792–3797 (1989).
  14. V. Lupei, A. Lupei, and S. Georgescu, “High-resolution spectroscopy of Nd3+ in YAlO3,” J. Phys.: Condens. Matter 4, L221–L224 (1992).
  15. V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of Nd:YAG: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995).
  16. L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
  17. V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
  18. V. Lupei, “Self-quenching of Nd3+ emission in laser garnet crystals,” Opt. Mater. 16, 137–152 (2001).
  19. V. Lupei, A. Lupei, N. Pavel, T. Taira, and A. Ikesue, “Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals,” Appl. Phys. B 73, 757–762 (2001).
  20. V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001).
  21. V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
  22. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
  23. L. D. Merkle and R. C. Powell, “Energy transfer among Nd3+ ions in garnet crystals,” Phys. Rev. B 20, 75–84 (1979).
  24. D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55, 8881–8886 (1997).
  25. L. D. Zusman, “Kinetics of luminescence damping in the hopping mechanism of quenching,” Sov. Phys. JETP 46, 347–354 (1977).
  26. I. Iparraguirre, R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Infrared-to-visible upconversion in K5Nd(MoO4)4 stoichiometric laser crystal,” J. Opt. Soc. Am. B 19, 2911–2920 (2002).
  27. D. J. Coleman, S. D. Jackson, P. Golding, and T. A. King, “Measurements of the spectroscopic and energy transfer parameters for Er3+-doped and Er3+, Pr3+-codoped PbO–Bi2O3–Ga3O3 glasses,” J. Opt. Soc. Am. B 19, 2927–2937 (2002).
  28. V. Ostrumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
  29. Y. Mita, M. Togashi, and H. Yamamoto, “Energy transfer processes in rare-earth-ion-doped materials,” J. Lumin. 87–89, 1026–1028 (2000).
  30. J. D. Zuegel and W. Seka, “Upconversion and reduced 4F3/2 upper-state lifetime in intensely pumped Nd:YLF,” Appl. Opt. 38, 2714–2723 (1999).
  31. A. G. Avaneson, B. I. Denker, V. V. Osiko, S. S. Pirumov, V. P. Sakun, V. A. Smirnov, and I. A. Sherbakov, “Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal,” Sov. J. Quantum Electron. 12, 744–747 (1982).
  32. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited